/ -k
|1 e
|- - --- for And(k > -oo, k < oo, k != 0)
$$\begin{cases} \frac{1}{k} - \frac{e^{- k}}{k} & \text{for}\: k > -\infty \wedge k < \infty \wedge k \neq 0 \\1 & \text{otherwise} \end{cases}$$
/ -k
|1 e
|- - --- for And(k > -oo, k < oo, k != 0)
$$\begin{cases} \frac{1}{k} - \frac{e^{- k}}{k} & \text{for}\: k > -\infty \wedge k < \infty \wedge k \neq 0 \\1 & \text{otherwise} \end{cases}$$
Ответ (Неопределённый)
[src] / // -k*x \
| ||-e |
| -k*x ||------- for k != 0|
| e dx = C + |< k |
| || |
/ || x otherwise |
\\ /
$$\int e^{- k x}\, dx = C + \begin{cases} - \frac{e^{- k x}}{k} & \text{for}\: k \neq 0 \\x & \text{otherwise} \end{cases}$$