1
/ -pi*I -pi*I
| ------ ------
| 3 y 3 y 3 / pi*I\
| x + y e *e *gamma(1/3)*lowergamma(1/3, 0) e *e *gamma(1/3)*lowergamma\1/3, e /
| e dx = - ---------------------------------------- + --------------------------------------------
| 9*gamma(4/3) 9*gamma(4/3)
/
0
$$\int_{0}^{1} e^{x^{3} + y}\, dx = - \frac{e^{y} e^{- \frac{i \pi}{3}} \Gamma{\left(\frac{1}{3} \right)}}{9 \Gamma{\left(\frac{4}{3} \right)}} \gamma\left(\frac{1}{3}, 0\right) + \frac{e^{y} e^{- \frac{i \pi}{3}} \Gamma{\left(\frac{1}{3} \right)}}{9 \Gamma{\left(\frac{4}{3} \right)}} \gamma\left(\frac{1}{3}, e^{i \pi}\right)$$
Ответ (Неопределённый)
[src] / -pi*I
| ------
| 3 y 3 / 3 pi*I\
| x + y e *e *gamma(1/3)*lowergamma\1/3, x *e /
| e dx = C + -----------------------------------------------
| 9*gamma(4/3)
/
$${{\Gamma\left({{1}\over{3}} , -x^3\right)\,e^{y}}\over{3}}$$