∫ Найти интеграл от y = f(x) = (e^x+1)^3 dx ((e в степени х плюс 1) в кубе) - с подробным решением онлайн [Есть ответ!]

Интеграл (e^x+1)^3 (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1             
      /             
     |              
     |          3   
     |  / x    \    
     |  \e  + 1/  dx
     |              
    /               
    0               
    $$\int\limits_{0}^{1} \left(e^{x} + 1\right)^{3}\, dx$$
    Подробное решение
    1. Есть несколько способов вычислить этот интеграл.

      Метод #1

      1. пусть .

        Тогда пусть и подставим :

        1. Перепишите подынтегральное выражение:

        2. Интегрируем почленно:

          1. Интеграл есть когда :

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Интеграл есть когда :

            Таким образом, результат будет:

          1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

          1. Интеграл есть .

          Результат есть:

        Если сейчас заменить ещё в:

      Метод #2

      1. Перепишите подынтегральное выражение:

      2. Интегрируем почленно:

        1. Есть несколько способов вычислить этот интеграл.

          Метод #1

          1. пусть .

            Тогда пусть и подставим :

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. Интеграл от экспоненты есть он же сам.

              Таким образом, результат будет:

            Если сейчас заменить ещё в:

          Метод #2

          1. пусть .

            Тогда пусть и подставим :

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

              Таким образом, результат будет:

            Если сейчас заменить ещё в:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. пусть .

            Тогда пусть и подставим :

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. Интеграл от экспоненты есть он же сам.

              Таким образом, результат будет:

            Если сейчас заменить ещё в:

          Таким образом, результат будет:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. Интеграл от экспоненты есть он же сам.

          Таким образом, результат будет:

        1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

        Результат есть:

      Метод #3

      1. Перепишите подынтегральное выражение:

      2. Интегрируем почленно:

        1. пусть .

          Тогда пусть и подставим :

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Интеграл от экспоненты есть он же сам.

            Таким образом, результат будет:

          Если сейчас заменить ещё в:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. пусть .

            Тогда пусть и подставим :

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. Интеграл от экспоненты есть он же сам.

              Таким образом, результат будет:

            Если сейчас заменить ещё в:

          Таким образом, результат будет:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. Интеграл от экспоненты есть он же сам.

          Таким образом, результат будет:

        1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

        Результат есть:

    2. Теперь упростить:

    3. Добавляем постоянную интегрирования:


    Ответ:

    График
    Ответ [src]
                  3      2
      23         e    3*e 
    - -- + 3*e + -- + ----
      6          3     2  
    $$- \frac{23}{6} + \frac{e^{3}}{3} + 3 e + \frac{3 e^{2}}{2}$$
    =
    =
                  3      2
      23         e    3*e 
    - -- + 3*e + -- + ----
      6          3     2  
    $$- \frac{23}{6} + \frac{e^{3}}{3} + 3 e + \frac{3 e^{2}}{2}$$
    Численный ответ [src]
    22.1002752748357
    Ответ (Неопределённый) [src]
      /                                                 
     |                                                  
     |         3                  3*x      2*x          
     | / x    \              x   e      3*e         / x\
     | \e  + 1/  dx = C + 3*e  + ---- + ------ + log\e /
     |                            3       2             
    /                                                   
    $$\int \left(e^{x} + 1\right)^{3}\, dx = C + \frac{e^{3 x}}{3} + \frac{3 e^{2 x}}{2} + 3 e^{x} + \log{\left(e^{x} \right)}$$
    График
    Интеграл (e^x+1)^3 (dx) /media/krcore-image-pods/hash/indefinite/5/01/b4dcaa79b5e1e135645142650b7ae.png