Перепишите подынтегральное выражение:
Используем интегрирование по частям:
пусть и пусть dx.
Затем dx.
Чтобы найти :
Интеграл от экспоненты есть он же сам.
Теперь решаем под-интеграл.
Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:
Используем интегрирование по частям, отметим, что в конечном итоге подынтегральное выражение повторяется.
Для подинтегрального выражения :
пусть и пусть .
Затем .
Для подинтегрального выражения :
пусть и пусть .
Затем .
Обратите внимание, что подынтегральное выражение повторилось, поэтому переместим его в сторону:
Поэтому,
Таким образом, результат будет:
Теперь упростить:
Добавляем постоянную интегрирования:
Ответ:
1 / | | x 1 E*cos(1) E*sin(1) | E *cos(x) dx = - - + -------- + -------- | 2 2 2 / 0
1.37802461354736