1
/
| 2 2
| 2 cosh (1) sinh (1) cosh(1)*sinh(1)
| cosh (x) dx = -------- - -------- + ---------------
| 2 2 2
/
0
$$\int_{0}^{1} \cosh^{2}{\left (x \right )}\, dx = - \frac{1}{2} \sinh^{2}{\left (1 \right )} + \frac{1}{2} \sinh{\left (1 \right )} \cosh{\left (1 \right )} + \frac{1}{2} \cosh^{2}{\left (1 \right )}$$
Ответ (Неопределённый)
[src] /
| 2 2
| 2 x*cosh (x) cosh(x)*sinh(x) x*sinh (x)
| cosh (x) dx = C + ---------- + --------------- - ----------
| 2 2 2
/
$${{{{e^{2\,x}}\over{2}}-{{e^ {- 2\,x }}\over{2}}+2\,x}\over{4}}$$