Интеграл cos(4*x+1) (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1                
      /                
     |                 
     |  cos(4*x + 1) dx
     |                 
    /                  
    0                  
    01cos(4x+1)dx\int\limits_{0}^{1} \cos{\left(4 x + 1 \right)}\, dx
    Подробное решение
    1. пусть u=4x+1u = 4 x + 1.

      Тогда пусть du=4dxdu = 4 dx и подставим du4\frac{du}{4}:

      cos(u)16du\int \frac{\cos{\left(u \right)}}{16}\, du

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        cos(u)4du=cos(u)du4\int \frac{\cos{\left(u \right)}}{4}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

        1. Интеграл от косинуса есть синус:

          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

        Таким образом, результат будет: sin(u)4\frac{\sin{\left(u \right)}}{4}

      Если сейчас заменить uu ещё в:

      sin(4x+1)4\frac{\sin{\left(4 x + 1 \right)}}{4}

    2. Теперь упростить:

      sin(4x+1)4\frac{\sin{\left(4 x + 1 \right)}}{4}

    3. Добавляем постоянную интегрирования:

      sin(4x+1)4+constant\frac{\sin{\left(4 x + 1 \right)}}{4}+ \mathrm{constant}


    Ответ:

    sin(4x+1)4+constant\frac{\sin{\left(4 x + 1 \right)}}{4}+ \mathrm{constant}

    График
    0.001.000.100.200.300.400.500.600.700.800.902-2
    Ответ [src]
      sin(1)   sin(5)
    - ------ + ------
        4        4   
    sin(5)4sin(1)4\frac{\sin{\left(5 \right)}}{4} - \frac{\sin{\left(1 \right)}}{4}
    =
    =
      sin(1)   sin(5)
    - ------ + ------
        4        4   
    sin(5)4sin(1)4\frac{\sin{\left(5 \right)}}{4} - \frac{\sin{\left(1 \right)}}{4}
    Численный ответ [src]
    -0.450098814867759
    Ответ (Неопределённый) [src]
      /                                  
     |                       sin(4*x + 1)
     | cos(4*x + 1) dx = C + ------------
     |                            4      
    /                                    
    cos(4x+1)dx=C+sin(4x+1)4\int \cos{\left(4 x + 1 \right)}\, dx = C + \frac{\sin{\left(4 x + 1 \right)}}{4}
    График
    Интеграл cos(4*x+1) (dx) /media/krcore-image-pods/hash/indefinite/c/fa/31401444989a91bcec5dca2e3748e.png