Интеграл cos(2-7*x) (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1                
      /                
     |                 
     |  cos(2 - 7*x) dx
     |                 
    /                  
    0                  
    01cos(27x)dx\int\limits_{0}^{1} \cos{\left(2 - 7 x \right)}\, dx
    Подробное решение
    1. пусть u=27xu = 2 - 7 x.

      Тогда пусть du=7dxdu = - 7 dx и подставим du7- \frac{du}{7}:

      cos(u)49du\int \frac{\cos{\left(u \right)}}{49}\, du

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        (cos(u)7)du=cos(u)du7\int \left(- \frac{\cos{\left(u \right)}}{7}\right)\, du = - \frac{\int \cos{\left(u \right)}\, du}{7}

        1. Интеграл от косинуса есть синус:

          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

        Таким образом, результат будет: sin(u)7- \frac{\sin{\left(u \right)}}{7}

      Если сейчас заменить uu ещё в:

      sin(7x2)7\frac{\sin{\left(7 x - 2 \right)}}{7}

    2. Добавляем постоянную интегрирования:

      sin(7x2)7+constant\frac{\sin{\left(7 x - 2 \right)}}{7}+ \mathrm{constant}


    Ответ:

    sin(7x2)7+constant\frac{\sin{\left(7 x - 2 \right)}}{7}+ \mathrm{constant}

    График
    0.001.000.100.200.300.400.500.600.700.800.902-2
    Ответ [src]
    sin(2)   sin(5)
    ------ + ------
      7        7   
    sin(5)7+sin(2)7\frac{\sin{\left(5 \right)}}{7} + \frac{\sin{\left(2 \right)}}{7}
    =
    =
    sin(2)   sin(5)
    ------ + ------
      7        7   
    sin(5)7+sin(2)7\frac{\sin{\left(5 \right)}}{7} + \frac{\sin{\left(2 \right)}}{7}
    Численный ответ [src]
    -0.00708954969106525
    Ответ (Неопределённый) [src]
      /                                   
     |                       sin(-2 + 7*x)
     | cos(2 - 7*x) dx = C + -------------
     |                             7      
    /                                     
    cos(27x)dx=C+sin(7x2)7\int \cos{\left(2 - 7 x \right)}\, dx = C + \frac{\sin{\left(7 x - 2 \right)}}{7}
    График
    Интеграл cos(2-7*x) (dx) /media/krcore-image-pods/hash/indefinite/9/98/0a38846e76e15ad1baf0b9351738c.png