Интеграл cos(2)^(4)*x (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1             
      /             
     |              
     |     4        
     |  cos (2)*x dx
     |              
    /               
    0               
    01xcos4(2)dx\int\limits_{0}^{1} x \cos^{4}{\left(2 \right)}\, dx
    Подробное решение
    1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

      xcos4(2)dx=cos4(2)xdx\int x \cos^{4}{\left(2 \right)}\, dx = \cos^{4}{\left(2 \right)} \int x\, dx

      1. Интеграл xnx^{n} есть xn+1n+1\frac{x^{n + 1}}{n + 1} когда n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      Таким образом, результат будет: x2cos4(2)2\frac{x^{2} \cos^{4}{\left(2 \right)}}{2}

    2. Добавляем постоянную интегрирования:

      x2cos4(2)2+constant\frac{x^{2} \cos^{4}{\left(2 \right)}}{2}+ \mathrm{constant}


    Ответ:

    x2cos4(2)2+constant\frac{x^{2} \cos^{4}{\left(2 \right)}}{2}+ \mathrm{constant}

    График
    0.001.000.100.200.300.400.500.600.700.800.900.000.05
    Ответ [src]
       4   
    cos (2)
    -------
       2   
    cos4(2)2\frac{\cos^{4}{\left(2 \right)}}{2}
    =
    =
       4   
    cos (2)
    -------
       2   
    cos4(2)2\frac{\cos^{4}{\left(2 \right)}}{2}
    Численный ответ [src]
    0.0149953426710587
    Ответ (Неопределённый) [src]
      /                             
     |                     2    4   
     |    4               x *cos (2)
     | cos (2)*x dx = C + ----------
     |                        2     
    /                               
    xcos4(2)dx=C+x2cos4(2)2\int x \cos^{4}{\left(2 \right)}\, dx = C + \frac{x^{2} \cos^{4}{\left(2 \right)}}{2}
    График
    Интеграл cos(2)^(4)*x (dx) /media/krcore-image-pods/hash/indefinite/1/f4/67be43d111a79bbfebe303409976f.png