Интеграл cos(7*x)^(2) (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1             
      /             
     |              
     |     2        
     |  cos (7*x) dx
     |              
    /               
    0               
    01cos2(7x)dx\int_{0}^{1} \cos^{2}{\left (7 x \right )}\, dx
    Подробное решение
    1. Перепишите подынтегральное выражение:

      cos2(7x)=12cos(14x)+12\cos^{2}{\left (7 x \right )} = \frac{1}{2} \cos{\left (14 x \right )} + \frac{1}{2}

    2. Интегрируем почленно:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        12cos(14x)dx=12cos(14x)dx\int \frac{1}{2} \cos{\left (14 x \right )}\, dx = \frac{1}{2} \int \cos{\left (14 x \right )}\, dx

        1. пусть u=14xu = 14 x.

          Тогда пусть du=14dxdu = 14 dx и подставим du14\frac{du}{14}:

          cos(u)du\int \cos{\left (u \right )}\, du

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            cos(u)du=114cos(u)du\int \cos{\left (u \right )}\, du = \frac{1}{14} \int \cos{\left (u \right )}\, du

            1. Интеграл от косинуса есть синус:

              cos(u)du=sin(u)\int \cos{\left (u \right )}\, du = \sin{\left (u \right )}

            Таким образом, результат будет: 114sin(u)\frac{1}{14} \sin{\left (u \right )}

          Если сейчас заменить uu ещё в:

          114sin(14x)\frac{1}{14} \sin{\left (14 x \right )}

        Таким образом, результат будет: 128sin(14x)\frac{1}{28} \sin{\left (14 x \right )}

      1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

        12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

      Результат есть: x2+128sin(14x)\frac{x}{2} + \frac{1}{28} \sin{\left (14 x \right )}

    3. Добавляем постоянную интегрирования:

      x2+128sin(14x)+constant\frac{x}{2} + \frac{1}{28} \sin{\left (14 x \right )}+ \mathrm{constant}


    Ответ:

    x2+128sin(14x)+constant\frac{x}{2} + \frac{1}{28} \sin{\left (14 x \right )}+ \mathrm{constant}

    График
    02468-8-6-4-2-1010-1010
    Ответ [src]
      1                                 
      /                                 
     |                                  
     |     2           1   cos(7)*sin(7)
     |  cos (7*x) dx = - + -------------
     |                 2         14     
    /                                   
    0                                   
    sin14+1428{{\sin 14+14}\over{28}}
    Численный ответ [src]
    0.53537883413196
    Ответ (Неопределённый) [src]
      /                                
     |                                 
     |    2               x   sin(14*x)
     | cos (7*x) dx = C + - + ---------
     |                    2       28   
    /                                  
    sin(14x)2+7x14{{{{\sin \left(14\,x\right)}\over{2}}+7\,x}\over{14}}