/ ___ \
1 ___ ____ |\/ 2 |
/ \/ 2 *\/ pi *fresnelc|------|*gamma(1/4)
| | ____|
| / 2\ \\/ pi /
| cos\t / dt = ----------------------------------------
| 8*gamma(5/4)
/
0
$$-{{\sqrt{\pi}\,\left(\left(\sqrt{2}\,i-\sqrt{2}\right)\,
\mathrm{erf}\left({{\sqrt{2}\,i+\sqrt{2}}\over{2}}\right)+\left(
\sqrt{2}\,i+\sqrt{2}\right)\,\mathrm{erf}\left({{\sqrt{2}\,i-\sqrt{2
}}\over{2}}\right)+\left(-\sqrt{2}\,i-\sqrt{2}\right)\,\mathrm{erf}
\left(\sqrt{-i}\right)+\left(\sqrt{2}\,i-\sqrt{2}\right)\,
\mathrm{erf}\left(\left(-1\right)^{{{1}\over{4}}}\right)\right)
}\over{16}}$$
Ответ (Неопределённый)
[src] / ___\
___ ____ |t*\/ 2 |
/ \/ 2 *\/ pi *fresnelc|-------|*gamma(1/4)
| | ____|
| / 2\ \ \/ pi /
| cos\t / dt = C + -----------------------------------------
| 8*gamma(5/4)
/
$$-{{\sqrt{\pi}\,\left(\left(\sqrt{2}\,i-\sqrt{2}\right)\,
\mathrm{erf}\left({{\left(\sqrt{2}\,i+\sqrt{2}\right)\,t}\over{2}}
\right)+\left(\sqrt{2}\,i+\sqrt{2}\right)\,\mathrm{erf}\left({{
\left(\sqrt{2}\,i-\sqrt{2}\right)\,t}\over{2}}\right)+\left(-\sqrt{2
}\,i-\sqrt{2}\right)\,\mathrm{erf}\left(\sqrt{-i}\,t\right)+\left(
\sqrt{2}\,i-\sqrt{2}\right)\,\mathrm{erf}\left(\left(-1\right)^{{{1
}\over{4}}}\,t\right)\right)}\over{16}}$$