1 1
/ /
| |
| /y\ | /y\
| cos|-| dx = | cos|-| dx
| \x/ | \x/
| |
/ /
0 0
$$\int_{0}^{1} \cos{\left (\frac{y}{x} \right )}\, dx = \int_{0}^{1} \cos{\left (\frac{y}{x} \right )}\, dx$$
Ответ (Неопределённый)
[src] /
|
| /y\ /y\ /y\
| cos|-| dx = C + x*cos|-| + y*Si|-|
| \x/ \x/ \x/
|
/
$${{2\,x\,\cos \left({{y}\over{x}}\right)+\left(i\,\Gamma\left(0 , -
{{i\,y}\over{x}}\right)-i\,\Gamma\left(0 , {{i\,y}\over{x}}\right)
\right)\,y}\over{2}}$$