↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример
1 / | | cos(x) | ------ dx | 3 | / 0
Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:
∫cos(x)3 dx=∫cos(x) dx3\int \frac{\cos{\left(x \right)}}{3}\, dx = \frac{\int \cos{\left(x \right)}\, dx}{3}∫3cos(x)dx=3∫cos(x)dx
Интеграл от косинуса есть синус:
∫cos(x) dx=sin(x)\int \cos{\left(x \right)}\, dx = \sin{\left(x \right)}∫cos(x)dx=sin(x)
Таким образом, результат будет: sin(x)3\frac{\sin{\left(x \right)}}{3}3sin(x)
Добавляем постоянную интегрирования:
sin(x)3+constant\frac{\sin{\left(x \right)}}{3}+ \mathrm{constant}3sin(x)+constant
Ответ:
sin(1) ------ 3
=
0.280490328269299
/ | | cos(x) sin(x) | ------ dx = C + ------ | 3 3 | /