1 _
/ |_ / 1/8 | \
| gamma(1/8)* | | | -1/4|
| / 4\ 1 2 \1/2, 9/8 | /
| cos\x / dx = ---------------------------------
| 8*gamma(9/8)
/
0
$${{i\,\Gamma\left({{1}\over{4}} , i\right)\,\sin \left({{\pi}\over{8
}}\right)}\over{8}}-{{i\,\Gamma\left({{1}\over{4}} , -i\right)\,
\sin \left({{\pi}\over{8}}\right)}\over{8}}-{{\Gamma\left({{1}\over{
4}} , i\right)\,\cos \left({{\pi}\over{8}}\right)}\over{8}}-{{\Gamma
\left({{1}\over{4}} , -i\right)\,\cos \left({{\pi}\over{8}}\right)
}\over{8}}+{{\Gamma\left({{1}\over{4}}\right)\,\cos \left({{\pi
}\over{8}}\right)}\over{4}}$$
Ответ (Неопределённый)
[src]
_ / | 8 \
/ |_ | 1/8 | -x |
| x*gamma(1/8)* | | | ----|
| / 4\ 1 2 \1/2, 9/8 | 4 /
| cos\x / dx = C + -----------------------------------
| 8*gamma(9/8)
/
$${{\left(\left(i\,\Gamma\left({{1}\over{4}} , i\,x^4\right)-i\,
\Gamma\left({{1}\over{4}} , -i\,x^4\right)\right)\,\sin \left({{\pi
}\over{8}}\right)+\left(-\Gamma\left({{1}\over{4}} , i\,x^4\right)-
\Gamma\left({{1}\over{4}} , -i\,x^4\right)\right)\,\cos \left({{\pi
}\over{8}}\right)\right)\,x}\over{8\,\left| x\right| }}$$