1 1
/ /
| |
| / 2 \ | / 2\
| cos\x - 1/ dx = | cos\-1 + x / dx
| |
/ /
0 0
$${{\sqrt{\pi}\,\left(\left(\left(\sqrt{2}\,i+\sqrt{2}\right)\,\sin 1
+\left(\sqrt{2}-\sqrt{2}\,i\right)\,\cos 1\right)\,\mathrm{erf}
\left({{\sqrt{2}\,i+\sqrt{2}}\over{2}}\right)+\left(\left(\sqrt{2}\,
i-\sqrt{2}\right)\,\sin 1+\left(-\sqrt{2}\,i-\sqrt{2}\right)\,\cos 1
\right)\,\mathrm{erf}\left({{\sqrt{2}\,i-\sqrt{2}}\over{2}}\right)+
\left(\left(\sqrt{2}-\sqrt{2}\,i\right)\,\sin 1+\left(\sqrt{2}\,i+
\sqrt{2}\right)\,\cos 1\right)\,\mathrm{erf}\left(\sqrt{-i}\right)+
\left(\left(\sqrt{2}\,i+\sqrt{2}\right)\,\sin 1+\left(\sqrt{2}-
\sqrt{2}\,i\right)\,\cos 1\right)\,\mathrm{erf}\left(\left(-1\right)
^{{{1}\over{4}}}\right)\right)}\over{16}}$$
Ответ (Неопределённый)
[src]$${{\sqrt{\pi}\,\left(\left(\left(\sqrt{2}\,i+\sqrt{2}\right)\,\sin 1
+\left(\sqrt{2}-\sqrt{2}\,i\right)\,\cos 1\right)\,\mathrm{erf}
\left({{\left(\sqrt{2}\,i+\sqrt{2}\right)\,x}\over{2}}\right)+\left(
\left(\sqrt{2}\,i-\sqrt{2}\right)\,\sin 1+\left(-\sqrt{2}\,i-\sqrt{2
}\right)\,\cos 1\right)\,\mathrm{erf}\left({{\left(\sqrt{2}\,i-
\sqrt{2}\right)\,x}\over{2}}\right)+\left(\left(\sqrt{2}-\sqrt{2}\,i
\right)\,\sin 1+\left(\sqrt{2}\,i+\sqrt{2}\right)\,\cos 1\right)\,
\mathrm{erf}\left(\sqrt{-i}\,x\right)+\left(\left(\sqrt{2}\,i+\sqrt{
2}\right)\,\sin 1+\left(\sqrt{2}-\sqrt{2}\,i\right)\,\cos 1\right)\,
\mathrm{erf}\left(\left(-1\right)^{{{1}\over{4}}}\,x\right)\right)
}\over{16}}$$