∫ Найти интеграл от y = f(x) = cos(x)^(24) dx (косинус от (х) в степени (24)) - с подробным решением онлайн [Есть ответ!]

Интеграл cos(x)^(24) (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1            
      /            
     |             
     |     24      
     |  cos  (x) dx
     |             
    /              
    0              
    $$\int_{0}^{1} \cos^{24}{\left (x \right )}\, dx$$
    Подробное решение
    1. Перепишите подынтегральное выражение:

    2. Перепишите подынтегральное выражение:

    3. Интегрируем почленно:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Перепишите подынтегральное выражение:

        2. Перепишите подынтегральное выражение:

        3. Интегрируем почленно:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. Перепишите подынтегральное выражение:

            3. Интегрируем почленно:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. Перепишите подынтегральное выражение:

                2. Есть несколько способов вычислить этот интеграл.

                  Метод #1

                  1. пусть .

                    Тогда пусть и подставим :

                    1. Интегрируем почленно:

                      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                        1. Интеграл есть :

                        Таким образом, результат будет:

                      1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

                      Результат есть:

                    Если сейчас заменить ещё в:

                  Метод #2

                  1. Перепишите подынтегральное выражение:

                  2. Интегрируем почленно:

                    1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                      1. пусть .

                        Тогда пусть и подставим :

                        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                          1. Интеграл есть :

                          Таким образом, результат будет:

                        Если сейчас заменить ещё в:

                      Таким образом, результат будет:

                    1. пусть .

                      Тогда пусть и подставим :

                      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                        1. Интеграл от косинуса есть синус:

                        Таким образом, результат будет:

                      Если сейчас заменить ещё в:

                    Результат есть:

                Таким образом, результат будет:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. Перепишите подынтегральное выражение:

                2. Интегрируем почленно:

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. пусть .

                      Тогда пусть и подставим :

                      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                        1. Интеграл от косинуса есть синус:

                        Таким образом, результат будет:

                      Если сейчас заменить ещё в:

                    Таким образом, результат будет:

                  1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

                  Результат есть:

                Таким образом, результат будет:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. пусть .

                  Тогда пусть и подставим :

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. Интеграл от косинуса есть синус:

                    Таким образом, результат будет:

                  Если сейчас заменить ещё в:

                Таким образом, результат будет:

              1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

              Результат есть:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. пусть .

              Тогда пусть и подставим :

              1. Интегрируем почленно:

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. пусть .

                    Тогда пусть и подставим :

                    1. Интеграл есть :

                    Если сейчас заменить ещё в:

                  Таким образом, результат будет:

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. пусть .

                    Тогда пусть и подставим :

                    1. Интеграл есть :

                    Если сейчас заменить ещё в:

                  Таким образом, результат будет:

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. Интеграл от косинуса есть синус:

                  Таким образом, результат будет:

                Результат есть:

              Если сейчас заменить ещё в:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. Перепишите подынтегральное выражение:

            3. Интегрируем почленно:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. Перепишите подынтегральное выражение:

                2. Интегрируем почленно:

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. пусть .

                      Тогда пусть и подставим :

                      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                        1. Интеграл от косинуса есть синус:

                        Таким образом, результат будет:

                      Если сейчас заменить ещё в:

                    Таким образом, результат будет:

                  1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

                  Результат есть:

                Таким образом, результат будет:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. пусть .

                  Тогда пусть и подставим :

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. Интеграл от косинуса есть синус:

                    Таким образом, результат будет:

                  Если сейчас заменить ещё в:

                Таким образом, результат будет:

              1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

              Результат есть:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. пусть .

              Тогда пусть и подставим :

              1. Интегрируем почленно:

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. Интеграл есть :

                  Таким образом, результат будет:

                1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

                Результат есть:

              Если сейчас заменить ещё в:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. Интегрируем почленно:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. пусть .

                  Тогда пусть и подставим :

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. Интеграл от косинуса есть синус:

                    Таким образом, результат будет:

                  Если сейчас заменить ещё в:

                Таким образом, результат будет:

              1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

              Результат есть:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. пусть .

              Тогда пусть и подставим :

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. Интеграл от косинуса есть синус:

                Таким образом, результат будет:

              Если сейчас заменить ещё в:

            Таким образом, результат будет:

          1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

          Результат есть:

        Таким образом, результат будет:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Перепишите подынтегральное выражение:

        2. пусть .

          Тогда пусть и подставим :

          1. Интегрируем почленно:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл есть :

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл есть :

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл есть :

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл есть :

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл есть :

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. Интеграл от косинуса есть синус:

              Таким образом, результат будет:

            Результат есть:

          Если сейчас заменить ещё в:

        Таким образом, результат будет:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Перепишите подынтегральное выражение:

        2. Перепишите подынтегральное выражение:

        3. Интегрируем почленно:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. пусть .

              Тогда пусть и подставим :

              1. Интегрируем почленно:

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. пусть .

                    Тогда пусть и подставим :

                    1. Интеграл есть :

                    Если сейчас заменить ещё в:

                  Таким образом, результат будет:

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. пусть .

                    Тогда пусть и подставим :

                    1. Интеграл есть :

                    Если сейчас заменить ещё в:

                  Таким образом, результат будет:

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. Интеграл от косинуса есть синус:

                  Таким образом, результат будет:

                Результат есть:

              Если сейчас заменить ещё в:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. Перепишите подынтегральное выражение:

            3. Интегрируем почленно:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. Перепишите подынтегральное выражение:

                2. Интегрируем почленно:

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. пусть .

                      Тогда пусть и подставим :

                      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                        1. Интеграл от косинуса есть синус:

                        Таким образом, результат будет:

                      Если сейчас заменить ещё в:

                    Таким образом, результат будет:

                  1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

                  Результат есть:

                Таким образом, результат будет:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. пусть .

                  Тогда пусть и подставим :

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. Интеграл от косинуса есть синус:

                    Таким образом, результат будет:

                  Если сейчас заменить ещё в:

                Таким образом, результат будет:

              1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

              Результат есть:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. пусть .

              Тогда пусть и подставим :

              1. Интегрируем почленно:

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. Интеграл есть :

                  Таким образом, результат будет:

                1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

                Результат есть:

              Если сейчас заменить ещё в:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. Интегрируем почленно:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. пусть .

                  Тогда пусть и подставим :

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. Интеграл от косинуса есть синус:

                    Таким образом, результат будет:

                  Если сейчас заменить ещё в:

                Таким образом, результат будет:

              1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

              Результат есть:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. пусть .

              Тогда пусть и подставим :

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. Интеграл от косинуса есть синус:

                Таким образом, результат будет:

              Если сейчас заменить ещё в:

            Таким образом, результат будет:

          1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

          Результат есть:

        Таким образом, результат будет:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Перепишите подынтегральное выражение:

        2. пусть .

          Тогда пусть и подставим :

          1. Интегрируем почленно:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл есть :

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл есть :

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл есть :

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл есть :

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. Интеграл от косинуса есть синус:

              Таким образом, результат будет:

            Результат есть:

          Если сейчас заменить ещё в:

        Таким образом, результат будет:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Перепишите подынтегральное выражение:

        2. Перепишите подынтегральное выражение:

        3. Интегрируем почленно:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. Перепишите подынтегральное выражение:

            3. Интегрируем почленно:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. Перепишите подынтегральное выражение:

                2. Интегрируем почленно:

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. пусть .

                      Тогда пусть и подставим :

                      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                        1. Интеграл от косинуса есть синус:

                        Таким образом, результат будет:

                      Если сейчас заменить ещё в:

                    Таким образом, результат будет:

                  1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

                  Результат есть:

                Таким образом, результат будет:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. пусть .

                  Тогда пусть и подставим :

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. Интеграл от косинуса есть синус:

                    Таким образом, результат будет:

                  Если сейчас заменить ещё в:

                Таким образом, результат будет:

              1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

              Результат есть:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. пусть .

              Тогда пусть и подставим :

              1. Интегрируем почленно:

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. Интеграл есть :

                  Таким образом, результат будет:

                1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

                Результат есть:

              Если сейчас заменить ещё в:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. Интегрируем почленно:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. пусть .

                  Тогда пусть и подставим :

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. Интеграл от косинуса есть синус:

                    Таким образом, результат будет:

                  Если сейчас заменить ещё в:

                Таким образом, результат будет:

              1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

              Результат есть:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. пусть .

              Тогда пусть и подставим :

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. Интеграл от косинуса есть синус:

                Таким образом, результат будет:

              Если сейчас заменить ещё в:

            Таким образом, результат будет:

          1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

          Результат есть:

        Таким образом, результат будет:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Перепишите подынтегральное выражение:

        2. пусть .

          Тогда пусть и подставим :

          1. Интегрируем почленно:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл есть :

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл есть :

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл есть :

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. Интеграл от косинуса есть синус:

              Таким образом, результат будет:

            Результат есть:

          Если сейчас заменить ещё в:

        Таким образом, результат будет:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Перепишите подынтегральное выражение:

        2. Перепишите подынтегральное выражение:

        3. Интегрируем почленно:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. пусть .

              Тогда пусть и подставим :

              1. Интегрируем почленно:

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. Интеграл есть :

                  Таким образом, результат будет:

                1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

                Результат есть:

              Если сейчас заменить ещё в:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. Интегрируем почленно:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. пусть .

                  Тогда пусть и подставим :

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. Интеграл от косинуса есть синус:

                    Таким образом, результат будет:

                  Если сейчас заменить ещё в:

                Таким образом, результат будет:

              1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

              Результат есть:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. пусть .

              Тогда пусть и подставим :

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. Интеграл от косинуса есть синус:

                Таким образом, результат будет:

              Если сейчас заменить ещё в:

            Таким образом, результат будет:

          1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

          Результат есть:

        Таким образом, результат будет:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Перепишите подынтегральное выражение:

        2. пусть .

          Тогда пусть и подставим :

          1. Интегрируем почленно:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл есть :

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл есть :

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. Интеграл от косинуса есть синус:

              Таким образом, результат будет:

            Результат есть:

          Если сейчас заменить ещё в:

        Таким образом, результат будет:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Перепишите подынтегральное выражение:

        2. Перепишите подынтегральное выражение:

        3. Интегрируем почленно:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. Интегрируем почленно:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. пусть .

                  Тогда пусть и подставим :

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. Интеграл от косинуса есть синус:

                    Таким образом, результат будет:

                  Если сейчас заменить ещё в:

                Таким образом, результат будет:

              1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

              Результат есть:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. пусть .

              Тогда пусть и подставим :

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. Интеграл от косинуса есть синус:

                Таким образом, результат будет:

              Если сейчас заменить ещё в:

            Таким образом, результат будет:

          1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

          Результат есть:

        Таким образом, результат будет:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Перепишите подынтегральное выражение:

        2. пусть .

          Тогда пусть и подставим :

          1. Интегрируем почленно:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. Интеграл есть :

              Таким образом, результат будет:

            1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

            Результат есть:

          Если сейчас заменить ещё в:

        Таким образом, результат будет:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Перепишите подынтегральное выражение:

        2. Интегрируем почленно:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. пусть .

              Тогда пусть и подставим :

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. Интеграл от косинуса есть синус:

                Таким образом, результат будет:

              Если сейчас заменить ещё в:

            Таким образом, результат будет:

          1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

          Результат есть:

        Таким образом, результат будет:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. пусть .

          Тогда пусть и подставим :

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Интеграл от косинуса есть синус:

            Таким образом, результат будет:

          Если сейчас заменить ещё в:

        Таким образом, результат будет:

      1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

      Результат есть:

    4. Добавляем постоянную интегрирования:


    Ответ:

    График
    Ответ [src]
      1                                                                                                                                                                                                                                                                                                      
      /                                                                                                                                                                                                                                                                                                      
     |                             23                   21                    19                     17                     13                      15                      7                      9                      11                                              3                       5          
     |     24          676039   cos  (1)*sin(1)   23*cos  (1)*sin(1)   161*cos  (1)*sin(1)   3059*cos  (1)*sin(1)   7429*cos  (1)*sin(1)   52003*cos  (1)*sin(1)   96577*cos (1)*sin(1)   96577*cos (1)*sin(1)   96577*cos  (1)*sin(1)   676039*cos(1)*sin(1)   676039*cos (1)*sin(1)   676039*cos (1)*sin(1)
     |  cos  (x) dx = ------- + --------------- + ------------------ + ------------------- + -------------------- + -------------------- + --------------------- + -------------------- + -------------------- + --------------------- + -------------------- + --------------------- + ---------------------
     |                4194304          24                528                   3520                 63360                  135168                 1013760                1310720                1474560                 1622016                4194304                 6291456                 7864320       
    /                                                                                                                                                                                                                                                                                                        
    0                                                                                                                                                                                                                                                                                                        
    $${{2629935\,\sin 16-660\,\sin ^38+364058640\,\sin 8+874368\,\sin ^54 -178759680\,\sin ^34+2075166720\,\sin 4-4423680\,\sin ^{11}2+ 126156800\,\sin ^92-1038090240\,\sin ^72+3737124864\,\sin ^52- 6920601600\,\sin ^32+8304721920\,\sin 2+5354228880}\over{33218887680 }}$$
    Численный ответ [src]
    0.253181347205199
    Ответ (Неопределённый) [src]
      /                                                                                                                                                                                                        
     |                          3             3             11           7           3                        5              9              5                                                                  
     |    24             529*sin (4*x)   5*sin (2*x)   3*sin  (2*x)   sin (2*x)   sin (8*x)   sin(2*x)   9*sin (2*x)   35*sin (2*x)   69*sin (4*x)   2047*sin(4*x)   5313*sin(16*x)   45967*sin(8*x)   676039*x
     | cos  (x) dx = C - ------------- - ----------- - ------------ - --------- - --------- + -------- + ----------- + ------------ + ------------ + ------------- + -------------- + -------------- + --------
     |                       98304            24          22528           32       50331648      4            80           9216         2621440          32768          67108864         4194304       4194304 
    /                                                                                                                                                                                                          
    $${{{{{{{{3\,\left({{\sin \left(16\,x\right)}\over{2}}+8\,x\right) }\over{16}}+{{\sin \left(8\,x\right)-{{\sin ^3\left(8\,x\right) }\over{3}}}\over{8}}+{{3\,\sin \left(8\,x\right)}\over{8}}+x}\over{ 128}}+{{15\,\left({{{{\sin \left(16\,x\right)}\over{2}}+8\,x}\over{8 }}+{{\sin \left(8\,x\right)}\over{2}}+2\,x\right)}\over{128}}+{{15\, \left({{\sin \left(8\,x\right)}\over{2}}+4\,x\right)}\over{128}}+{{3 \,\left({{\sin ^5\left(4\,x\right)}\over{5}}-{{2\,\sin ^3\left(4\,x \right)}\over{3}}+\sin \left(4\,x\right)\right)}\over{32}}+{{5\, \left(\sin \left(4\,x\right)-{{\sin ^3\left(4\,x\right)}\over{3}} \right)}\over{16}}+{{3\,\sin \left(4\,x\right)}\over{32}}+{{x}\over{ 16}}}\over{8192}}+{{33\,\left({{5\,\left({{{{\sin \left(16\,x\right) }\over{2}}+8\,x}\over{8}}+{{\sin \left(8\,x\right)}\over{2}}+2\,x \right)}\over{64}}+{{5\,\left({{\sin \left(8\,x\right)}\over{2}}+4\, x\right)}\over{32}}+{{{{\sin ^5\left(4\,x\right)}\over{5}}-{{2\, \sin ^3\left(4\,x\right)}\over{3}}+\sin \left(4\,x\right)}\over{32}} +{{5\,\left(\sin \left(4\,x\right)-{{\sin ^3\left(4\,x\right)}\over{ 3}}\right)}\over{16}}+{{5\,\sin \left(4\,x\right)}\over{32}}+{{x }\over{8}}\right)}\over{4096}}+{{495\,\left({{{{{{\sin \left(16\,x \right)}\over{2}}+8\,x}\over{8}}+{{\sin \left(8\,x\right)}\over{2}}+ 2\,x}\over{32}}+{{3\,\left({{\sin \left(8\,x\right)}\over{2}}+4\,x \right)}\over{16}}+{{\sin \left(4\,x\right)-{{\sin ^3\left(4\,x \right)}\over{3}}}\over{4}}+{{\sin \left(4\,x\right)}\over{4}}+{{x }\over{4}}\right)}\over{8192}}+{{231\,\left({{3\,\left({{\sin \left( 8\,x\right)}\over{2}}+4\,x\right)}\over{16}}+{{\sin \left(4\,x \right)-{{\sin ^3\left(4\,x\right)}\over{3}}}\over{8}}+{{3\,\sin \left(4\,x\right)}\over{8}}+{{x}\over{2}}\right)}\over{2048}}+{{495 \,\left({{{{\sin \left(8\,x\right)}\over{2}}+4\,x}\over{8}}+{{\sin \left(4\,x\right)}\over{2}}+x\right)}\over{8192}}+{{33\,\left({{ \sin \left(4\,x\right)}\over{2}}+2\,x\right)}\over{4096}}+{{3\, \left(-{{\sin ^{11}\left(2\,x\right)}\over{11}}+{{5\,\sin ^9\left(2 \,x\right)}\over{9}}-{{10\,\sin ^7\left(2\,x\right)}\over{7}}+2\, \sin ^5\left(2\,x\right)-{{5\,\sin ^3\left(2\,x\right)}\over{3}}+ \sin \left(2\,x\right)\right)}\over{1024}}+{{55\,\left({{\sin ^9 \left(2\,x\right)}\over{9}}-{{4\,\sin ^7\left(2\,x\right)}\over{7}}+ {{6\,\sin ^5\left(2\,x\right)}\over{5}}-{{4\,\sin ^3\left(2\,x \right)}\over{3}}+\sin \left(2\,x\right)\right)}\over{1024}}+{{99\, \left(-{{\sin ^7\left(2\,x\right)}\over{7}}+{{3\,\sin ^5\left(2\,x \right)}\over{5}}-\sin ^3\left(2\,x\right)+\sin \left(2\,x\right) \right)}\over{512}}+{{99\,\left({{\sin ^5\left(2\,x\right)}\over{5}} -{{2\,\sin ^3\left(2\,x\right)}\over{3}}+\sin \left(2\,x\right) \right)}\over{512}}+{{55\,\left(\sin \left(2\,x\right)-{{\sin ^3 \left(2\,x\right)}\over{3}}\right)}\over{1024}}+{{3\,\sin \left(2\,x \right)}\over{1024}}+{{x}\over{2048}}}\over{2}}$$