∫ Найти интеграл от y = f(x) = cot(x)^3 dx (котангенс от (х) в кубе) - с подробным решением онлайн [Есть ответ!]

Интеграл cot(x)^3 (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1           
      /           
     |            
     |     3      
     |  cot (x) dx
     |            
    /             
    0             
    $$\int\limits_{0}^{1} \cot^{3}{\left(x \right)}\, dx$$
    Подробное решение
    1. Перепишите подынтегральное выражение:

    2. Есть несколько способов вычислить этот интеграл.

      Метод #1

      1. пусть .

        Тогда пусть и подставим :

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. пусть .

            Тогда пусть и подставим :

            1. Перепишите подынтегральное выражение:

            2. Интегрируем почленно:

              1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

              1. Интеграл есть .

              Результат есть:

            Если сейчас заменить ещё в:

          Таким образом, результат будет:

        Если сейчас заменить ещё в:

      Метод #2

      1. Перепишите подынтегральное выражение:

      2. Интегрируем почленно:

        1. пусть .

          Тогда пусть и подставим :

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

            Таким образом, результат будет:

          Если сейчас заменить ещё в:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. Перепишите подынтегральное выражение:

          2. пусть .

            Тогда пусть и подставим :

            1. Интеграл есть .

            Если сейчас заменить ещё в:

          Таким образом, результат будет:

        Результат есть:

      Метод #3

      1. Перепишите подынтегральное выражение:

      2. Интегрируем почленно:

        1. пусть .

          Тогда пусть и подставим :

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

            Таким образом, результат будет:

          Если сейчас заменить ещё в:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. Перепишите подынтегральное выражение:

          2. пусть .

            Тогда пусть и подставим :

            1. Интеграл есть .

            Если сейчас заменить ещё в:

          Таким образом, результат будет:

        Результат есть:

    3. Добавляем постоянную интегрирования:


    Ответ:

    График
    Ответ [src]
    oo
    $$\infty$$
    =
    =
    oo
    $$\infty$$
    Численный ответ [src]
    9.15365037903492e+37
    Ответ (Неопределённый) [src]
      /                                        
     |                     /    2   \      2   
     |    3             log\-csc (x)/   csc (x)
     | cot (x) dx = C + ------------- - -------
     |                        2            2   
    /                                          
    $$\int \cot^{3}{\left(x \right)}\, dx = C + \frac{\log{\left(- \csc^{2}{\left(x \right)} \right)}}{2} - \frac{\csc^{2}{\left(x \right)}}{2}$$