/ _________\ / _________\
log\1 + \/ tanh(1) / / _________\ log\1 - \/ tanh(1) /
-------------------- - atan\\/ tanh(1) / - --------------------
2 2
$$- \operatorname{atan}{\left(\sqrt{\tanh{\left(1 \right)}} \right)} + \frac{\log{\left(\sqrt{\tanh{\left(1 \right)}} + 1 \right)}}{2} - \frac{\log{\left(1 - \sqrt{\tanh{\left(1 \right)}} \right)}}{2}$$
/ _________\ / _________\
log\1 + \/ tanh(1) / / _________\ log\1 - \/ tanh(1) /
-------------------- - atan\\/ tanh(1) / - --------------------
2 2
$$- \operatorname{atan}{\left(\sqrt{\tanh{\left(1 \right)}} \right)} + \frac{\log{\left(\sqrt{\tanh{\left(1 \right)}} + 1 \right)}}{2} - \frac{\log{\left(1 - \sqrt{\tanh{\left(1 \right)}} \right)}}{2}$$
Ответ (Неопределённый)
[src] /
| / _________\ / _________\
| _________ log\1 + \/ tanh(x) / / _________\ log\-1 + \/ tanh(x) /
| \/ tanh(x) dx = C + -------------------- - atan\\/ tanh(x) / - ---------------------
| 2 2
/
$$\int \sqrt{\tanh{\left(x \right)}}\, dx = C - \frac{\log{\left(\sqrt{\tanh{\left(x \right)}} - 1 \right)}}{2} + \frac{\log{\left(\sqrt{\tanh{\left(x \right)}} + 1 \right)}}{2} - \operatorname{atan}{\left(\sqrt{\tanh{\left(x \right)}} \right)}$$