Интеграл sqrt(3-x) (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1             
      /             
     |              
     |    _______   
     |  \/ 3 - x  dx
     |              
    /               
    0               
    013xdx\int\limits_{0}^{1} \sqrt{3 - x}\, dx
    Подробное решение
    1. пусть u=x+3u = - x + 3.

      Тогда пусть du=dxdu = - dx и подставим du- du:

      udu\int \sqrt{u}\, du

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        udu=udu\int \sqrt{u}\, du = - \int \sqrt{u}\, du

        1. Интеграл unu^{n} есть un+1n+1\frac{u^{n + 1}}{n + 1}:

          udu=2u323\int \sqrt{u}\, du = \frac{2 u^{\frac{3}{2}}}{3}

        Таким образом, результат будет: 2u323- \frac{2 u^{\frac{3}{2}}}{3}

      Если сейчас заменить uu ещё в:

      23(x+3)32- \frac{2}{3} \left(- x + 3\right)^{\frac{3}{2}}

    2. Добавляем постоянную интегрирования:

      23(x+3)32+constant- \frac{2}{3} \left(- x + 3\right)^{\frac{3}{2}}+ \mathrm{constant}


    Ответ:

    23(x+3)32+constant- \frac{2}{3} \left(- x + 3\right)^{\frac{3}{2}}+ \mathrm{constant}

    График
    0.001.000.100.200.300.400.500.600.700.800.905-5
    Ответ [src]
                  ___
        ___   4*\/ 2 
    2*\/ 3  - -------
                 3   
    423+23- \frac{4 \sqrt{2}}{3} + 2 \sqrt{3}
    =
    =
                  ___
        ___   4*\/ 2 
    2*\/ 3  - -------
                 3   
    423+23- \frac{4 \sqrt{2}}{3} + 2 \sqrt{3}
    Численный ответ [src]
    1.57848353197363
    Ответ (Неопределённый) [src]
      /                               
     |                             3/2
     |   _______          2*(3 - x)   
     | \/ 3 - x  dx = C - ------------
     |                         3      
    /                                 
    3xdx=C2(3x)323\int \sqrt{3 - x}\, dx = C - \frac{2 \left(3 - x\right)^{\frac{3}{2}}}{3}
    График
    Интеграл sqrt(3-x) (dx) /media/krcore-image-pods/hash/indefinite/5/cc/ff326c5617ab0b98be43a609a01e5.png