↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример
1 / | | _______ | \/ x + 3 dx | / 0
пусть u=x+3u = x + 3u=x+3.
Тогда пусть du=dxdu = dxdu=dx и подставим dududu:
∫u du\int \sqrt{u}\, du∫udu
Интеграл unu^{n}un есть un+1n+1\frac{u^{n + 1}}{n + 1}n+1un+1:
∫u du=2u323\int \sqrt{u}\, du = \frac{2 u^{\frac{3}{2}}}{3}∫udu=32u23
Если сейчас заменить uuu ещё в:
23(x+3)32\frac{2}{3} \left(x + 3\right)^{\frac{3}{2}}32(x+3)23
Теперь упростить:
Добавляем постоянную интегрирования:
23(x+3)32+constant\frac{2}{3} \left(x + 3\right)^{\frac{3}{2}}+ \mathrm{constant}32(x+3)23+constant
Ответ:
16 ___ -- - 2*\/ 3 3
=
1.86923171819558
/ | 3/2 | _______ 2*(3 + x) | \/ x + 3 dx = C + ------------ | 3 /