1
/
| /1 b*log(a + b)\ b*log(b)
| log(a*x + b) dx = - a*|- - ------------| - -------- + log(a + b)
| |a 2 | a
/ \ a /
0
$$\int_{0}^{1} \log{\left (a x + b \right )}\, dx = - a \left(\frac{1}{a} - \frac{b}{a^{2}} \log{\left (a + b \right )}\right) + \log{\left (a + b \right )} - \frac{b}{a} \log{\left (b \right )}$$
Ответ (Неопределённый)
[src] / // x*log(b) for a = 0\
| || |
| log(a*x + b) dx = C + |<-b + (a*x + b)*log(a*x + b) - a*x |
| ||--------------------------------- otherwise|
/ \\ a /
$${{\left(a\,x+b\right)\,\log \left(a\,x+b\right)-a\,x-b}\over{a}}$$