∫ Найти интеграл от y = f(x) = (log(x))^2 dx ((логарифм от (х)) в квадрате) - с подробным решением онлайн [Есть ответ!]

Интеграл (log(x))^2 (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1           
      /           
     |            
     |     2      
     |  log (x) dx
     |            
    /             
    0             
    $$\int\limits_{0}^{1} \log{\left(x \right)}^{2}\, dx$$
    Подробное решение
    1. пусть .

      Тогда пусть и подставим :

      1. Используем интегрирование по частям:

        пусть и пусть .

        Затем .

        Чтобы найти :

        1. Интеграл от экспоненты есть он же сам.

        Теперь решаем под-интеграл.

      2. Используем интегрирование по частям:

        пусть и пусть .

        Затем .

        Чтобы найти :

        1. Интеграл от экспоненты есть он же сам.

        Теперь решаем под-интеграл.

      3. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Интеграл от экспоненты есть он же сам.

        Таким образом, результат будет:

      Если сейчас заменить ещё в:

    2. Теперь упростить:

    3. Добавляем постоянную интегрирования:


    Ответ:

    График
    Ответ [src]
    2
    $$2$$
    =
    =
    2
    $$2$$
    Численный ответ [src]
    2.0
    Ответ (Неопределённый) [src]
      /                                             
     |                                              
     |    2                        2                
     | log (x) dx = C + 2*x + x*log (x) - 2*x*log(x)
     |                                              
    /                                               
    $$\int \log{\left(x \right)}^{2}\, dx = C + x \log{\left(x \right)}^{2} - 2 x \log{\left(x \right)} + 2 x$$