∫ Найти интеграл от y = f(x) = 1/cos(x)^(22) dx (1 делить на косинус от (х) в степени (22)) - с подробным решением онлайн [Есть ответ!]

Интеграл 1/cos(x)^(22) (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1            
      /            
     |             
     |     1       
     |  -------- dx
     |     22      
     |  cos  (x)   
     |             
    /              
    0              
    $$\int_{0}^{1} \frac{1}{\cos^{22}{\left (x \right )}}\, dx$$
    Подробное решение
    1. Есть несколько способов вычислить этот интеграл.

      Метод #1

      1. Перепишите подынтегральное выражение:

      2. Перепишите подынтегральное выражение:

      3. Перепишите подынтегральное выражение:

      4. Интегрируем почленно:

        1. пусть .

          Тогда пусть и подставим :

          1. Интеграл есть :

          Если сейчас заменить ещё в:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. пусть .

            Тогда пусть и подставим :

            1. Интеграл есть :

            Если сейчас заменить ещё в:

          Таким образом, результат будет:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. пусть .

            Тогда пусть и подставим :

            1. Интеграл есть :

            Если сейчас заменить ещё в:

          Таким образом, результат будет:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. пусть .

            Тогда пусть и подставим :

            1. Интеграл есть :

            Если сейчас заменить ещё в:

          Таким образом, результат будет:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. пусть .

            Тогда пусть и подставим :

            1. Интеграл есть :

            Если сейчас заменить ещё в:

          Таким образом, результат будет:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. пусть .

            Тогда пусть и подставим :

            1. Интеграл есть :

            Если сейчас заменить ещё в:

          Таким образом, результат будет:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. пусть .

            Тогда пусть и подставим :

            1. Интеграл есть :

            Если сейчас заменить ещё в:

          Таким образом, результат будет:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. пусть .

            Тогда пусть и подставим :

            1. Интеграл есть :

            Если сейчас заменить ещё в:

          Таким образом, результат будет:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. пусть .

            Тогда пусть и подставим :

            1. Интеграл есть :

            Если сейчас заменить ещё в:

          Таким образом, результат будет:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. пусть .

            Тогда пусть и подставим :

            1. Интеграл есть :

            Если сейчас заменить ещё в:

          Таким образом, результат будет:

        Результат есть:

      Метод #2

      1. Перепишите подынтегральное выражение:

      2. Перепишите подынтегральное выражение:

      3. Интегрируем почленно:

        1. пусть .

          Тогда пусть и подставим :

          1. Интеграл есть :

          Если сейчас заменить ещё в:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. пусть .

            Тогда пусть и подставим :

            1. Интеграл есть :

            Если сейчас заменить ещё в:

          Таким образом, результат будет:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. пусть .

            Тогда пусть и подставим :

            1. Интеграл есть :

            Если сейчас заменить ещё в:

          Таким образом, результат будет:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. пусть .

            Тогда пусть и подставим :

            1. Интеграл есть :

            Если сейчас заменить ещё в:

          Таким образом, результат будет:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. пусть .

            Тогда пусть и подставим :

            1. Интеграл есть :

            Если сейчас заменить ещё в:

          Таким образом, результат будет:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. пусть .

            Тогда пусть и подставим :

            1. Интеграл есть :

            Если сейчас заменить ещё в:

          Таким образом, результат будет:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. пусть .

            Тогда пусть и подставим :

            1. Интеграл есть :

            Если сейчас заменить ещё в:

          Таким образом, результат будет:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. пусть .

            Тогда пусть и подставим :

            1. Интеграл есть :

            Если сейчас заменить ещё в:

          Таким образом, результат будет:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. пусть .

            Тогда пусть и подставим :

            1. Интеграл есть :

            Если сейчас заменить ещё в:

          Таким образом, результат будет:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. пусть .

            Тогда пусть и подставим :

            1. Интеграл есть :

            Если сейчас заменить ещё в:

          Таким образом, результат будет:

        Результат есть:

    2. Теперь упростить:

    3. Добавляем постоянную интегрирования:


    Ответ:

    График
    Ответ [src]
      1                                                                                                                                                                                              
      /                                                                                                                                                                                              
     |                                                                                                                                                                                               
     |     1             sin(1)      20*sin(1)       120*sin(1)      128*sin(1)      256*sin(1)     3072*sin(1)      10240*sin(1)     32768*sin(1)     81920*sin(1)    131072*sin(1)    262144*sin(1)
     |  -------- dx = ----------- + ------------ + ------------- + ------------- + ------------- + -------------- + -------------- + -------------- + -------------- + -------------- + -------------
     |     22               21             19              17              15              13               11                9                5                7                3      969969*cos(1)
     |  cos  (x)      21*cos  (1)   399*cos  (1)   2261*cos  (1)   2261*cos  (1)   4199*cos  (1)   46189*cos  (1)   138567*cos (1)   323323*cos (1)   969969*cos (1)   969969*cos (1)                
     |                                                                                                                                                                                               
    /                                                                                                                                                                                                
    0                                                                                                                                                                                                
    $${{46189\,\tan ^{21}1+510510\,\tan ^{19}1+2567565\,\tan ^{17}1+ 7759752\,\tan ^{15}1+15668730\,\tan ^{13}1+22221108\,\tan ^{11}1+ 22632610\,\tan ^91+16628040\,\tan ^71+8729721\,\tan ^51+3233230\, \tan ^31+969969\,\tan 1}\over{969969}}$$
    Численный ответ [src]
    23849.9070179375
    Ответ (Неопределённый) [src]
      /                                                                                                                                                              
     |                                               21            3            19            17            9             7             13             11            
     |    1                   15           5      tan  (x)   10*tan (x)   10*tan  (x)   45*tan  (x)   70*tan (x)   120*tan (x)   210*tan  (x)   252*tan  (x)         
     | -------- dx = C + 8*tan  (x) + 9*tan (x) + -------- + ---------- + ----------- + ----------- + ---------- + ----------- + ------------ + ------------ + tan(x)
     |    22                                         21          3             19            17           3             7             13             11              
     | cos  (x)                                                                                                                                                      
     |                                                                                                                                                               
    /                                                                                                                                                                
    $${{46189\,\tan ^{21}x+510510\,\tan ^{19}x+2567565\,\tan ^{17}x+ 7759752\,\tan ^{15}x+15668730\,\tan ^{13}x+22221108\,\tan ^{11}x+ 22632610\,\tan ^9x+16628040\,\tan ^7x+8729721\,\tan ^5x+3233230\, \tan ^3x+969969\,\tan x}\over{969969}}$$