3
3*log(1 - sin(1)) 3*log(1 + sin(1)) -5*sin(1) + 3*sin (1)
- ----------------- + ----------------- - --------------------------
16 16 2 4
8 - 16*sin (1) + 8*sin (1)
$$\frac{3 \log{\left(\sin{\left(1 \right)} + 1 \right)}}{16} - \frac{3 \log{\left(1 - \sin{\left(1 \right)} \right)}}{16} - \frac{- 5 \sin{\left(1 \right)} + 3 \sin^{3}{\left(1 \right)}}{- 16 \sin^{2}{\left(1 \right)} + 8 \sin^{4}{\left(1 \right)} + 8}$$
3
3*log(1 - sin(1)) 3*log(1 + sin(1)) -5*sin(1) + 3*sin (1)
- ----------------- + ----------------- - --------------------------
16 16 2 4
8 - 16*sin (1) + 8*sin (1)
$$\frac{3 \log{\left(\sin{\left(1 \right)} + 1 \right)}}{16} - \frac{3 \log{\left(1 - \sin{\left(1 \right)} \right)}}{16} - \frac{- 5 \sin{\left(1 \right)} + 3 \sin^{3}{\left(1 \right)}}{- 16 \sin^{2}{\left(1 \right)} + 8 \sin^{4}{\left(1 \right)} + 8}$$
Ответ (Неопределённый)
[src] /
| 3
| 1 3*log(-1 + sin(x)) 3*log(1 + sin(x)) -5*sin(x) + 3*sin (x)
| 1*------- dx = C - ------------------ + ----------------- - --------------------------
| 5 16 16 2 4
| cos (x) 8 - 16*sin (x) + 8*sin (x)
|
/
$$\int 1 \cdot \frac{1}{\cos^{5}{\left(x \right)}}\, dx = C - \frac{3 \sin^{3}{\left(x \right)} - 5 \sin{\left(x \right)}}{8 \sin^{4}{\left(x \right)} - 16 \sin^{2}{\left(x \right)} + 8} - \frac{3 \log{\left(\sin{\left(x \right)} - 1 \right)}}{16} + \frac{3 \log{\left(\sin{\left(x \right)} + 1 \right)}}{16}$$