1
/
| ___ / ___\ ___ ___ / ___\
| 1 \/ 2 *log\2 - \/ 2 / pi*\/ 2 \/ 2 *log\2 + \/ 2 /
| ------ dx = - -------------------- + -------- + --------------------
| 4 8 8 8
| 1 + x
|
/
0
$${{\log \left(\sqrt{2}+2\right)}\over{2^{{{5}\over{2}}}}}-{{\log
\left(2-\sqrt{2}\right)}\over{2^{{{5}\over{2}}}}}+{{\pi}\over{2^{{{5
}\over{2}}}}}$$
Ответ (Неопределённый)
[src] /
| ___ / 2 ___\ ___ / ___\ ___ / ___\ ___ / 2 ___\
| 1 \/ 2 *log\1 + x - x*\/ 2 / \/ 2 *atan\1 + x*\/ 2 / \/ 2 *atan\-1 + x*\/ 2 / \/ 2 *log\1 + x + x*\/ 2 /
| ------ dx = C - --------------------------- + ----------------------- + ------------------------ + ---------------------------
| 4 8 4 4 8
| 1 + x
|
/
$${{\log \left(x^2+\sqrt{2}\,x+1\right)}\over{2^{{{5}\over{2}}}}}-{{
\log \left(x^2-\sqrt{2}\,x+1\right)}\over{2^{{{5}\over{2}}}}}+{{
\arctan \left({{2\,x+\sqrt{2}}\over{\sqrt{2}}}\right)}\over{2^{{{3
}\over{2}}}}}+{{\arctan \left({{2\,x-\sqrt{2}}\over{\sqrt{2}}}
\right)}\over{2^{{{3}\over{2}}}}}$$