Интеграл 1/(1+x)^3 (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1            
      /            
     |             
     |     1       
     |  -------- dx
     |         3   
     |  (1 + x)    
     |             
    /              
    0              
    011(x+1)3dx\int_{0}^{1} \frac{1}{\left(x + 1\right)^{3}}\, dx
    Подробное решение
    1. Есть несколько способов вычислить этот интеграл.

      Метод #1

      1. Перепишите подынтегральное выражение:

        1(x+1)3=1(x+1)3\frac{1}{\left(x + 1\right)^{3}} = \frac{1}{\left(x + 1\right)^{3}}

      2. пусть u=x+1u = x + 1.

        Тогда пусть du=dxdu = dx и подставим dudu:

        1u3du\int \frac{1}{u^{3}}\, du

        1. Интеграл unu^{n} есть un+1n+1\frac{u^{n + 1}}{n + 1}:

          1u3du=12u2\int \frac{1}{u^{3}}\, du = - \frac{1}{2 u^{2}}

        Если сейчас заменить uu ещё в:

        12(x+1)2- \frac{1}{2 \left(x + 1\right)^{2}}

      Метод #2

      1. Перепишите подынтегральное выражение:

        1(x+1)3=1x3+3x2+3x+1\frac{1}{\left(x + 1\right)^{3}} = \frac{1}{x^{3} + 3 x^{2} + 3 x + 1}

      2. Перепишите подынтегральное выражение:

        1x3+3x2+3x+1=1(x+1)3\frac{1}{x^{3} + 3 x^{2} + 3 x + 1} = \frac{1}{\left(x + 1\right)^{3}}

      3. пусть u=x+1u = x + 1.

        Тогда пусть du=dxdu = dx и подставим dudu:

        1u3du\int \frac{1}{u^{3}}\, du

        1. Интеграл unu^{n} есть un+1n+1\frac{u^{n + 1}}{n + 1}:

          1u3du=12u2\int \frac{1}{u^{3}}\, du = - \frac{1}{2 u^{2}}

        Если сейчас заменить uu ещё в:

        12(x+1)2- \frac{1}{2 \left(x + 1\right)^{2}}

    2. Добавляем постоянную интегрирования:

      12(x+1)2+constant- \frac{1}{2 \left(x + 1\right)^{2}}+ \mathrm{constant}


    Ответ:

    12(x+1)2+constant- \frac{1}{2 \left(x + 1\right)^{2}}+ \mathrm{constant}

    График
    02468-8-6-4-2-1010-25002500
    Ответ [src]
      1                  
      /                  
     |                   
     |     1             
     |  -------- dx = 3/8
     |         3         
     |  (1 + x)          
     |                   
    /                    
    0                    
    38{{3}\over{8}}
    Численный ответ [src]
    0.375
    Ответ (Неопределённый) [src]
      /                            
     |                             
     |    1                  1     
     | -------- dx = C - ----------
     |        3                   2
     | (1 + x)           2*(1 + x) 
     |                             
    /                              
    12(x+1)2-{{1}\over{2\,\left(x+1\right)^2}}