∫ Найти интеграл от y = f(x) = 1/sin(x)^4 dx (1 делить на синус от (х) в степени 4) - с подробным решением онлайн [Есть ответ!]

Интеграл 1/sin(x)^4 (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1             
      /             
     |              
     |       1      
     |  1*------- dx
     |       4      
     |    sin (x)   
     |              
    /               
    0               
    $$\int\limits_{0}^{1} 1 \cdot \frac{1}{\sin^{4}{\left(x \right)}}\, dx$$
    Подробное решение
    1. Перепишите подынтегральное выражение:

    2. Есть несколько способов вычислить этот интеграл.

      Метод #1

      1. пусть .

        Тогда пусть и подставим :

        1. Интегрируем почленно:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Интеграл есть когда :

            Таким образом, результат будет:

          1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

          Результат есть:

        Если сейчас заменить ещё в:

      Метод #2

      1. Перепишите подынтегральное выражение:

      2. Интегрируем почленно:

        1. пусть .

          Тогда пусть и подставим :

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Интеграл есть когда :

            Таким образом, результат будет:

          Если сейчас заменить ещё в:

        Результат есть:

      Метод #3

      1. Перепишите подынтегральное выражение:

      2. Интегрируем почленно:

        1. пусть .

          Тогда пусть и подставим :

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Интеграл есть когда :

            Таким образом, результат будет:

          Если сейчас заменить ещё в:

        Результат есть:

    3. Добавляем постоянную интегрирования:


    Ответ:

    График
    Ответ [src]
    oo
    $$\infty$$
    =
    =
    oo
    $$\infty$$
    Численный ответ [src]
    7.81431122445857e+56
    Ответ (Неопределённый) [src]
      /                                   
     |                                3   
     |      1                      cot (x)
     | 1*------- dx = C - cot(x) - -------
     |      4                         3   
     |   sin (x)                          
     |                                    
    /                                     
    $$\int 1 \cdot \frac{1}{\sin^{4}{\left(x \right)}}\, dx = C - \frac{\cot^{3}{\left(x \right)}}{3} - \cot{\left(x \right)}$$
    График
    Интеграл 1/sin(x)^4 (dx) /media/krcore-image-pods/hash/indefinite/d/27/5866727dd5ac740c62d295ce84bf1.png