Интеграл 1/(3+x)^2 (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1            
      /            
     |             
     |     1       
     |  -------- dx
     |         2   
     |  (3 + x)    
     |             
    /              
    0              
    011(x+3)2dx\int_{0}^{1} \frac{1}{\left(x + 3\right)^{2}}\, dx
    Подробное решение
    1. Есть несколько способов вычислить этот интеграл.

      Метод #1

      1. Перепишите подынтегральное выражение:

        1(x+3)2=1(x+3)2\frac{1}{\left(x + 3\right)^{2}} = \frac{1}{\left(x + 3\right)^{2}}

      2. пусть u=x+3u = x + 3.

        Тогда пусть du=dxdu = dx и подставим dudu:

        1u2du\int \frac{1}{u^{2}}\, du

        1. Интеграл unu^{n} есть un+1n+1\frac{u^{n + 1}}{n + 1}:

          1u2du=1u\int \frac{1}{u^{2}}\, du = - \frac{1}{u}

        Если сейчас заменить uu ещё в:

        1x+3- \frac{1}{x + 3}

      Метод #2

      1. Перепишите подынтегральное выражение:

        1(x+3)2=1x2+6x+9\frac{1}{\left(x + 3\right)^{2}} = \frac{1}{x^{2} + 6 x + 9}

      2. Перепишите подынтегральное выражение:

        1x2+6x+9=1(x+3)2\frac{1}{x^{2} + 6 x + 9} = \frac{1}{\left(x + 3\right)^{2}}

      3. пусть u=x+3u = x + 3.

        Тогда пусть du=dxdu = dx и подставим dudu:

        1u2du\int \frac{1}{u^{2}}\, du

        1. Интеграл unu^{n} есть un+1n+1\frac{u^{n + 1}}{n + 1}:

          1u2du=1u\int \frac{1}{u^{2}}\, du = - \frac{1}{u}

        Если сейчас заменить uu ещё в:

        1x+3- \frac{1}{x + 3}

    2. Добавляем постоянную интегрирования:

      1x+3+constant- \frac{1}{x + 3}+ \mathrm{constant}


    Ответ:

    1x+3+constant- \frac{1}{x + 3}+ \mathrm{constant}

    График
    02468-8-6-4-2-1010-250250
    Ответ [src]
      1                   
      /                   
     |                    
     |     1              
     |  -------- dx = 1/12
     |         2          
     |  (3 + x)           
     |                    
    /                     
    0                     
    112{{1}\over{12}}
    Численный ответ [src]
    0.0833333333333333
    Ответ (Неопределённый) [src]
      /                       
     |                        
     |    1                1  
     | -------- dx = C - -----
     |        2          3 + x
     | (3 + x)                
     |                        
    /                         
    1x+3-{{1}\over{x+3}}