∫ Найти интеграл от y = f(x) = 1/(x-3) dx (1 делить на (х минус 3)) - с подробным решением онлайн [Есть ответ!]

Интеграл 1/(x-3) (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1           
      /           
     |            
     |      1     
     |  1*----- dx
     |    x - 3   
     |            
    /             
    0             
    $$\int\limits_{0}^{1} 1 \cdot \frac{1}{x - 3}\, dx$$
    Подробное решение
    1. пусть .

      Тогда пусть и подставим :

      1. Интеграл есть .

      Если сейчас заменить ещё в:

    2. Теперь упростить:

    3. Добавляем постоянную интегрирования:


    Ответ:

    График
    Ответ [src]
    -log(3) + log(2)
    $$- \log{\left(3 \right)} + \log{\left(2 \right)}$$
    =
    =
    -log(3) + log(2)
    $$- \log{\left(3 \right)} + \log{\left(2 \right)}$$
    Численный ответ [src]
    -0.405465108108164
    Ответ (Неопределённый) [src]
      /                           
     |                            
     |     1                      
     | 1*----- dx = C + log(x - 3)
     |   x - 3                    
     |                            
    /                             
    $$\int 1 \cdot \frac{1}{x - 3}\, dx = C + \log{\left(x - 3 \right)}$$
    График
    Интеграл 1/(x-3) (dx) /media/krcore-image-pods/hash/indefinite/b/91/07d8774d1dc139d9c50fdda89be9c.png