∫ Найти интеграл от y = f(x) = 1/(x*(x-2)) dx (1 делить на (х умножить на (х минус 2))) - с подробным решением онлайн [Есть ответ!]

Интеграл 1/(x*(x-2)) (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1               
      /               
     |                
     |        1       
     |  1*--------- dx
     |    x*(x - 2)   
     |                
    /                 
    0                 
    $$\int\limits_{0}^{1} 1 \cdot \frac{1}{x \left(x - 2\right)}\, dx$$
    Подробное решение
    1. Есть несколько способов вычислить этот интеграл.

      Метод #1

      1. Перепишите подынтегральное выражение:

      2. Интегрируем почленно:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. пусть .

            Тогда пусть и подставим :

            1. Интеграл есть .

            Если сейчас заменить ещё в:

          Таким образом, результат будет:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. Интеграл есть .

          Таким образом, результат будет:

        Результат есть:

      Метод #2

      1. Перепишите подынтегральное выражение:

      2. Перепишите подынтегральное выражение:

      3. Интегрируем почленно:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. пусть .

            Тогда пусть и подставим :

            1. Интеграл есть .

            Если сейчас заменить ещё в:

          Таким образом, результат будет:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. Интеграл есть .

          Таким образом, результат будет:

        Результат есть:

    2. Добавляем постоянную интегрирования:


    Ответ:

    График
    Ответ [src]
          pi*I
    -oo + ----
           2  
    $$-\infty + \frac{i \pi}{2}$$
    =
    =
          pi*I
    -oo + ----
           2  
    $$-\infty + \frac{i \pi}{2}$$
    Численный ответ [src]
    -22.3917966572764
    Ответ (Неопределённый) [src]
      /                                         
     |                                          
     |       1              log(-2 + x)   log(x)
     | 1*--------- dx = C + ----------- - ------
     |   x*(x - 2)               2          2   
     |                                          
    /                                           
    $$\int 1 \cdot \frac{1}{x \left(x - 2\right)}\, dx = C - \frac{\log{\left(x \right)}}{2} + \frac{\log{\left(x - 2 \right)}}{2}$$