___ / ___\ ___ ___ / ___\
\/ 2 *log\2 - \/ 2 / pi*\/ 2 \/ 2 *log\2 + \/ 2 /
- -------------------- + -------- + --------------------
8 8 8
$$- \frac{\sqrt{2} \log{\left(2 - \sqrt{2} \right)}}{8} + \frac{\sqrt{2} \log{\left(\sqrt{2} + 2 \right)}}{8} + \frac{\sqrt{2} \pi}{8}$$
___ / ___\ ___ ___ / ___\
\/ 2 *log\2 - \/ 2 / pi*\/ 2 \/ 2 *log\2 + \/ 2 /
- -------------------- + -------- + --------------------
8 8 8
$$- \frac{\sqrt{2} \log{\left(2 - \sqrt{2} \right)}}{8} + \frac{\sqrt{2} \log{\left(\sqrt{2} + 2 \right)}}{8} + \frac{\sqrt{2} \pi}{8}$$
Ответ (Неопределённый)
[src] /
| ___ / 2 ___\ ___ / ___\ ___ / ___\ ___ / 2 ___\
| 1 \/ 2 *log\1 + x - x*\/ 2 / \/ 2 *atan\1 + x*\/ 2 / \/ 2 *atan\-1 + x*\/ 2 / \/ 2 *log\1 + x + x*\/ 2 /
| 1*------ dx = C - --------------------------- + ----------------------- + ------------------------ + ---------------------------
| 4 8 4 4 8
| x + 1
|
/
$$\int 1 \cdot \frac{1}{x^{4} + 1}\, dx = C - \frac{\sqrt{2} \log{\left(x^{2} - \sqrt{2} x + 1 \right)}}{8} + \frac{\sqrt{2} \log{\left(x^{2} + \sqrt{2} x + 1 \right)}}{8} + \frac{\sqrt{2} \operatorname{atan}{\left(\sqrt{2} x - 1 \right)}}{4} + \frac{\sqrt{2} \operatorname{atan}{\left(\sqrt{2} x + 1 \right)}}{4}$$