∫ Найти интеграл от y = f(x) = (1-x)*asin(x) dx ((1 минус х) умножить на арксинус от (х)) - с подробным решением онлайн [Есть ответ!]

Интеграл (1-x)*asin(x) (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1                   
      /                   
     |                    
     |  (1 - x)*asin(x) dx
     |                    
    /                     
    0                     
    $$\int_{0}^{1} \left(- x + 1\right) \operatorname{asin}{\left (x \right )}\, dx$$
    Подробное решение
    1. Есть несколько способов вычислить этот интеграл.

      Метод #1

      1. пусть .

        Тогда пусть и подставим :

        1. Интегрируем почленно:

          1. Используем интегрирование по частям:

            пусть и пусть dx.

            Затем dx.

            Чтобы найти :

            1. Интеграл есть :

            Теперь решаем под-интеграл.

          2. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              TrigSubstitutionRule(theta=_theta, func=sin(_theta), rewritten=sin(_theta)**2, substep=RewriteRule(rewritten=-cos(2*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=-1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=-cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=-cos(2*_theta)/2 + 1/2, symbol=_theta), context=sin(_theta)**2, symbol=_theta), restriction=And(u < 1, u > -1), context=u**2/sqrt(-u**2 + 1), symbol=u)

            Таким образом, результат будет:

          1. Используем интегрирование по частям:

            пусть и пусть dx.

            Затем dx.

            Чтобы найти :

            1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

            Теперь решаем под-интеграл.

          2. пусть .

            Тогда пусть и подставим :

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. Интеграл есть :

              Таким образом, результат будет:

            Если сейчас заменить ещё в:

          Результат есть:

        Если сейчас заменить ещё в:

      Метод #2

      1. Используем интегрирование по частям:

        пусть и пусть dx.

        Затем dx.

        Чтобы найти :

        1. Интегрируем почленно:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Интеграл есть :

            Таким образом, результат будет:

          1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

          Результат есть:

        Теперь решаем под-интеграл.

      2. Перепишите подынтегральное выражение:

      3. Интегрируем почленно:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            TrigSubstitutionRule(theta=_theta, func=sin(_theta), rewritten=sin(_theta)**2, substep=RewriteRule(rewritten=-cos(2*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=-1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=-cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=-cos(2*_theta)/2 + 1/2, symbol=_theta), context=sin(_theta)**2, symbol=_theta), restriction=And(x < 1, x > -1), context=x**2/sqrt(-x**2 + 1), symbol=x)

          Таким образом, результат будет:

        1. пусть .

          Тогда пусть и подставим :

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Интеграл есть :

            Таким образом, результат будет:

          Если сейчас заменить ещё в:

        Результат есть:

      Метод #3

      1. Перепишите подынтегральное выражение:

      2. Интегрируем почленно:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. Используем интегрирование по частям:

            пусть и пусть dx.

            Затем dx.

            Чтобы найти :

            1. Интеграл есть :

            Теперь решаем под-интеграл.

          2. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              TrigSubstitutionRule(theta=_theta, func=sin(_theta), rewritten=sin(_theta)**2, substep=RewriteRule(rewritten=-cos(2*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=-1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=-cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=-cos(2*_theta)/2 + 1/2, symbol=_theta), context=sin(_theta)**2, symbol=_theta), restriction=And(x < 1, x > -1), context=x**2/sqrt(-x**2 + 1), symbol=x)

            Таким образом, результат будет:

          Таким образом, результат будет:

        1. Используем интегрирование по частям:

          пусть и пусть dx.

          Затем dx.

          Чтобы найти :

          1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

          Теперь решаем под-интеграл.

        2. пусть .

          Тогда пусть и подставим :

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Интеграл есть :

            Таким образом, результат будет:

          Если сейчас заменить ещё в:

        Результат есть:

    2. Теперь упростить:

    3. Добавляем постоянную интегрирования:


    Ответ:

    График
    Ответ [src]
      1                               
      /                               
     |                            3*pi
     |  (1 - x)*asin(x) dx = -1 + ----
     |                             8  
    /                                 
    0                                 
    $${{3\,\pi}\over{8}}-1$$
    Численный ответ [src]
    0.178097245096172
    Ответ (Неопределённый) [src]
                                              /                 ________                                                   
                                              |                /      2                                                    
                                              <  asin(x)   x*\/  1 - x                                                     
      /                            ________   |- ------- + -------------  for And(-x > -1, -x < 1)                2        
     |                            /      2    \     2            2                                               x *asin(x)
     | (1 - x)*asin(x) dx = C + \/  1 - x   - ---------------------------------------------------- + x*asin(x) - ----------
     |                                                                 2                                             2     
    /                                                                                                                      
    $$\left(x-{{x^2}\over{2}}\right)\,\arcsin x+{{\arcsin x}\over{4}}-{{x \,\sqrt{1-x^2}}\over{4}}+\sqrt{1-x^2}$$