Интеграл 1-x^2 (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1            
      /            
     |             
     |  /     2\   
     |  \1 - x / dx
     |             
    /              
    0              
    01x2+1dx\int_{0}^{1} - x^{2} + 1\, dx
    Подробное решение
    1. Интегрируем почленно:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        x2dx=x2dx\int - x^{2}\, dx = - \int x^{2}\, dx

        1. Интеграл xnx^{n} есть xn+1n+1\frac{x^{n + 1}}{n + 1}:

          x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

        Таким образом, результат будет: x33- \frac{x^{3}}{3}

      1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

        1dx=x\int 1\, dx = x

      Результат есть: x33+x- \frac{x^{3}}{3} + x

    2. Добавляем постоянную интегрирования:

      x33+x+constant- \frac{x^{3}}{3} + x+ \mathrm{constant}


    Ответ:

    x33+x+constant- \frac{x^{3}}{3} + x+ \mathrm{constant}

    График
    02468-8-6-4-2-1010-500500
    Ответ [src]
      1                  
      /                  
     |                   
     |  /     2\         
     |  \1 - x / dx = 2/3
     |                   
    /                    
    0                    
    23{{2}\over{3}}
    Численный ответ [src]
    0.666666666666667
    Ответ (Неопределённый) [src]
      /                        
     |                        3
     | /     2\              x 
     | \1 - x / dx = C + x - --
     |                       3 
    /                          
    xx33x-{{x^3}\over{3}}