∫ Найти интеграл от y = f(x) = 1+(tan(x))^2 dx (1 плюс (тангенс от (х)) в квадрате) - с подробным решением онлайн [Есть ответ!]

Интеграл 1+(tan(x))^2 (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1                 
      /                 
     |                  
     |  /       2   \   
     |  \1 + tan (x)/ dx
     |                  
    /                   
    0                   
    $$\int\limits_{0}^{1} \left(\tan^{2}{\left(x \right)} + 1\right)\, dx$$
    Подробное решение
    1. Интегрируем почленно:

      1. Перепишите подынтегральное выражение:

      2. Интегрируем почленно:

        1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

        Результат есть:

      1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

      Результат есть:

    2. Добавляем постоянную интегрирования:


    Ответ:

    График
    Ответ [src]
    sin(1)
    ------
    cos(1)
    $$\frac{\sin{\left(1 \right)}}{\cos{\left(1 \right)}}$$
    =
    =
    sin(1)
    ------
    cos(1)
    $$\frac{\sin{\left(1 \right)}}{\cos{\left(1 \right)}}$$
    Численный ответ [src]
    1.5574077246549
    Ответ (Неопределённый) [src]
      /                             
     |                              
     | /       2   \                
     | \1 + tan (x)/ dx = C + tan(x)
     |                              
    /                               
    $$\int \left(\tan^{2}{\left(x \right)} + 1\right)\, dx = C + \tan{\left(x \right)}$$
    График
    Интеграл 1+(tan(x))^2 (dx) /media/krcore-image-pods/hash/indefinite/2/5a/dec9dfe9d5eac4c7a6ee95fff20da.png