log(1 - sin(1)) log(1 + sin(1)) sin(1)
- --------------- + --------------- - --------------
4 4 2
-2 + 2*sin (1)
$$\frac{\log{\left(\sin{\left(1 \right)} + 1 \right)}}{4} - \frac{\log{\left(1 - \sin{\left(1 \right)} \right)}}{4} - \frac{\sin{\left(1 \right)}}{-2 + 2 \sin^{2}{\left(1 \right)}}$$
log(1 - sin(1)) log(1 + sin(1)) sin(1)
- --------------- + --------------- - --------------
4 4 2
-2 + 2*sin (1)
$$\frac{\log{\left(\sin{\left(1 \right)} + 1 \right)}}{4} - \frac{\log{\left(1 - \sin{\left(1 \right)} \right)}}{4} - \frac{\sin{\left(1 \right)}}{-2 + 2 \sin^{2}{\left(1 \right)}}$$
Ответ (Неопределённый)
[src] /
|
| 3 log(-1 + sin(z)) log(1 + sin(z)) sin(z)
| sec (z*1) dz = C - ---------------- + --------------- - --------------
| 4 4 2
/ -2 + 2*sin (z)
$$\int \sec^{3}{\left(z 1 \right)}\, dz = C - \frac{\log{\left(\sin{\left(z \right)} - 1 \right)}}{4} + \frac{\log{\left(\sin{\left(z \right)} + 1 \right)}}{4} - \frac{\sin{\left(z \right)}}{2 \sin^{2}{\left(z \right)} - 2}$$