/cos(a) cos(a + b)
|------ - ---------- for And(b > -oo, b < oo, b != 0)
< b b
|
\ sin(a) otherwise
$$\begin{cases} \frac{\cos{\left(a \right)}}{b} - \frac{\cos{\left(a + b \right)}}{b} & \text{for}\: b > -\infty \wedge b < \infty \wedge b \neq 0 \\\sin{\left(a \right)} & \text{otherwise} \end{cases}$$
/cos(a) cos(a + b)
|------ - ---------- for And(b > -oo, b < oo, b != 0)
< b b
|
\ sin(a) otherwise
$$\begin{cases} \frac{\cos{\left(a \right)}}{b} - \frac{\cos{\left(a + b \right)}}{b} & \text{for}\: b > -\infty \wedge b < \infty \wedge b \neq 0 \\\sin{\left(a \right)} & \text{otherwise} \end{cases}$$
Ответ (Неопределённый)
[src] / //-cos(a + b*x) \
| ||-------------- for b != 0|
| sin(a + b*x) dx = C + |< b |
| || |
/ \\ x*sin(a) otherwise /
$$\int \sin{\left(a + b x \right)}\, dx = C + \begin{cases} - \frac{\cos{\left(a + b x \right)}}{b} & \text{for}\: b \neq 0 \\x \sin{\left(a \right)} & \text{otherwise} \end{cases}$$