Интеграл sin(2*x)^2 (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1             
      /             
     |              
     |     2        
     |  sin (2*x) dx
     |              
    /               
    0               
    01sin2(2x)dx\int\limits_{0}^{1} \sin^{2}{\left(2 x \right)}\, dx
    Подробное решение
    1. Перепишите подынтегральное выражение:

      sin2(2x)=12cos(4x)2\sin^{2}{\left(2 x \right)} = \frac{1}{2} - \frac{\cos{\left(4 x \right)}}{2}

    2. Интегрируем почленно:

      1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

        12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        (cos(4x)2)dx=cos(4x)dx2\int \left(- \frac{\cos{\left(4 x \right)}}{2}\right)\, dx = - \frac{\int \cos{\left(4 x \right)}\, dx}{2}

        1. пусть u=4xu = 4 x.

          Тогда пусть du=4dxdu = 4 dx и подставим du4\frac{du}{4}:

          cos(u)16du\int \frac{\cos{\left(u \right)}}{16}\, du

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            cos(u)4du=cos(u)du4\int \frac{\cos{\left(u \right)}}{4}\, du = \frac{\int \cos{\left(u \right)}\, du}{4}

            1. Интеграл от косинуса есть синус:

              cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

            Таким образом, результат будет: sin(u)4\frac{\sin{\left(u \right)}}{4}

          Если сейчас заменить uu ещё в:

          sin(4x)4\frac{\sin{\left(4 x \right)}}{4}

        Таким образом, результат будет: sin(4x)8- \frac{\sin{\left(4 x \right)}}{8}

      Результат есть: x2sin(4x)8\frac{x}{2} - \frac{\sin{\left(4 x \right)}}{8}

    3. Добавляем постоянную интегрирования:

      x2sin(4x)8+constant\frac{x}{2} - \frac{\sin{\left(4 x \right)}}{8}+ \mathrm{constant}


    Ответ:

    x2sin(4x)8+constant\frac{x}{2} - \frac{\sin{\left(4 x \right)}}{8}+ \mathrm{constant}

    График
    0.001.000.100.200.300.400.500.600.700.800.9002
    Ответ [src]
    1   cos(2)*sin(2)
    - - -------------
    2         4      
    sin(2)cos(2)4+12- \frac{\sin{\left(2 \right)} \cos{\left(2 \right)}}{4} + \frac{1}{2}
    =
    =
    1   cos(2)*sin(2)
    - - -------------
    2         4      
    sin(2)cos(2)4+12- \frac{\sin{\left(2 \right)} \cos{\left(2 \right)}}{4} + \frac{1}{2}
    Численный ответ [src]
    0.594600311913491
    Ответ (Неопределённый) [src]
      /                               
     |                                
     |    2               x   sin(4*x)
     | sin (2*x) dx = C + - - --------
     |                    2      8    
    /                                 
    sin2(2x)dx=C+x2sin(4x)8\int \sin^{2}{\left(2 x \right)}\, dx = C + \frac{x}{2} - \frac{\sin{\left(4 x \right)}}{8}
    График
    Интеграл sin(2*x)^2 (dx) /media/krcore-image-pods/hash/indefinite/e/3b/be36804038a66c1fa49dab808f7b1.png