/1 cos(n)
|- - ------ for And(n > -oo, n < oo, n != 0)
$$\begin{cases} - \frac{\cos{\left(n \right)}}{n} + \frac{1}{n} & \text{for}\: n > -\infty \wedge n < \infty \wedge n \neq 0 \\0 & \text{otherwise} \end{cases}$$
/1 cos(n)
|- - ------ for And(n > -oo, n < oo, n != 0)
$$\begin{cases} - \frac{\cos{\left(n \right)}}{n} + \frac{1}{n} & \text{for}\: n > -\infty \wedge n < \infty \wedge n \neq 0 \\0 & \text{otherwise} \end{cases}$$
Ответ (Неопределённый)
[src] / //-cos(n*x) \
| ||---------- for n != 0|
| sin(n*x)*1 dx = C + |< n |
| || |
/ \\ 0 otherwise /
$$\int \sin{\left(n x \right)} 1\, dx = C + \begin{cases} - \frac{\cos{\left(n x \right)}}{n} & \text{for}\: n \neq 0 \\0 & \text{otherwise} \end{cases}$$