∫ Найти интеграл от y = f(x) = (sin(t))^4 ((синус от (t)) в степени 4) - с подробным решением онлайн [Есть ответ!]

Интеграл (sin(t))^4 (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1           
      /           
     |            
     |     4      
     |  sin (t) dt
     |            
    /             
    0             
    $$\int\limits_{0}^{1} \sin^{4}{\left(t \right)}\, dt$$
    Подробное решение
    1. Перепишите подынтегральное выражение:

    2. Есть несколько способов вычислить этот интеграл.

      Метод #1

      1. Перепишите подынтегральное выражение:

      2. Интегрируем почленно:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. Перепишите подынтегральное выражение:

          2. Интегрируем почленно:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. Интеграл от косинуса есть синус:

                  Таким образом, результат будет:

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

            Результат есть:

          Таким образом, результат будет:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. пусть .

            Тогда пусть и подставим :

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. Интеграл от косинуса есть синус:

              Таким образом, результат будет:

            Если сейчас заменить ещё в:

          Таким образом, результат будет:

        1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

        Результат есть:

      Метод #2

      1. Перепишите подынтегральное выражение:

      2. Интегрируем почленно:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. Перепишите подынтегральное выражение:

          2. Интегрируем почленно:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. Интеграл от косинуса есть синус:

                  Таким образом, результат будет:

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

            Результат есть:

          Таким образом, результат будет:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. пусть .

            Тогда пусть и подставим :

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. Интеграл от косинуса есть синус:

              Таким образом, результат будет:

            Если сейчас заменить ещё в:

          Таким образом, результат будет:

        1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

        Результат есть:

    3. Добавляем постоянную интегрирования:


    Ответ:

    График
    Ответ [src]
                             3          
    3   3*cos(1)*sin(1)   sin (1)*cos(1)
    - - --------------- - --------------
    8          8                4       
    $$- \frac{3 \sin{\left(1 \right)} \cos{\left(1 \right)}}{8} - \frac{\sin^{3}{\left(1 \right)} \cos{\left(1 \right)}}{4} + \frac{3}{8}$$
    =
    =
                             3          
    3   3*cos(1)*sin(1)   sin (1)*cos(1)
    - - --------------- - --------------
    8          8                4       
    $$- \frac{3 \sin{\left(1 \right)} \cos{\left(1 \right)}}{8} - \frac{\sin^{3}{\left(1 \right)} \cos{\left(1 \right)}}{4} + \frac{3}{8}$$
    Численный ответ [src]
    0.124025565315207
    Ответ (Неопределённый) [src]
      /                                          
     |                                           
     |    4             sin(2*t)   sin(4*t)   3*t
     | sin (t) dt = C - -------- + -------- + ---
     |                     4          32       8 
    /                                            
    $$\int \sin^{4}{\left(t \right)}\, dt = C + \frac{3 t}{8} - \frac{\sin{\left(2 t \right)}}{4} + \frac{\sin{\left(4 t \right)}}{32}$$
    График
    Интеграл (sin(t))^4 (dx) /media/krcore-image-pods/hash/indefinite/f/b8/a126622fc1dc3e9fd86969787263f.png