∫ Найти интеграл от y = f(x) = (sin(3*x))^5 dx ((синус от (3 умножить на х)) в степени 5) - с подробным решением онлайн [Есть ответ!]

Интеграл (sin(3*x))^5 (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1             
      /             
     |              
     |     5        
     |  sin (3*x) dx
     |              
    /               
    0               
    $$\int_{0}^{1} \sin^{5}{\left (3 x \right )}\, dx$$
    Подробное решение
    1. Перепишите подынтегральное выражение:

    2. Есть несколько способов вычислить этот интеграл.

      Метод #1

      1. пусть .

        Тогда пусть и подставим :

        1. Интегрируем почленно:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. пусть .

              Тогда пусть и подставим :

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. Интеграл есть :

                Таким образом, результат будет:

              Если сейчас заменить ещё в:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. пусть .

              Тогда пусть и подставим :

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. Интеграл есть :

                Таким образом, результат будет:

              Если сейчас заменить ещё в:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Интеграл от синуса есть минус косинус:

            Таким образом, результат будет:

          Результат есть:

        Если сейчас заменить ещё в:

      Метод #2

      1. Перепишите подынтегральное выражение:

      2. Интегрируем почленно:

        1. пусть .

          Тогда пусть и подставим :

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Интеграл есть :

            Таким образом, результат будет:

          Если сейчас заменить ещё в:

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          1. пусть .

            Тогда пусть и подставим :

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. Интеграл есть :

              Таким образом, результат будет:

            Если сейчас заменить ещё в:

          Таким образом, результат будет:

        1. пусть .

          Тогда пусть и подставим :

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Интеграл от синуса есть минус косинус:

            Таким образом, результат будет:

          Если сейчас заменить ещё в:

        Результат есть:

    3. Теперь упростить:

    4. Добавляем постоянную интегрирования:


    Ответ:

    График
    Ответ [src]
      1                                                 
      /                                                 
     |                                  5           3   
     |     5           8    cos(3)   cos (3)   2*cos (3)
     |  sin (3*x) dx = -- - ------ - ------- + ---------
     |                 45     3         15         9    
    /                                                   
    0                                                   
    $${{8}\over{45}}-{{3\,\cos ^53-10\,\cos ^33+15\,\cos 3}\over{45}}$$
    Численный ответ [src]
    0.355555113446564
    Ответ (Неопределённый) [src]
      /                                                     
     |                                  5             3     
     |    5               cos(3*x)   cos (3*x)   2*cos (3*x)
     | sin (3*x) dx = C - -------- - --------- + -----------
     |                       3           15           9     
    /                                                       
    $${{-{{\cos ^5\left(3\,x\right)}\over{5}}+{{2\,\cos ^3\left(3\,x \right)}\over{3}}-\cos \left(3\,x\right)}\over{3}}$$