∫ Найти интеграл от y = f(x) = sin(x)^(22) dx (синус от (х) в степени (22)) - с подробным решением онлайн [Есть ответ!]

Интеграл sin(x)^(22) (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1            
      /            
     |             
     |     22      
     |  sin  (x) dx
     |             
    /              
    0              
    $$\int_{0}^{1} \sin^{22}{\left (x \right )}\, dx$$
    Подробное решение
    1. Перепишите подынтегральное выражение:

    2. Перепишите подынтегральное выражение:

    3. Интегрируем почленно:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Перепишите подынтегральное выражение:

        2. Есть несколько способов вычислить этот интеграл.

          Метод #1

          1. пусть .

            Тогда пусть и подставим :

            1. Интегрируем почленно:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. пусть .

                  Тогда пусть и подставим :

                  1. Интеграл есть :

                  Если сейчас заменить ещё в:

                Таким образом, результат будет:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. пусть .

                  Тогда пусть и подставим :

                  1. Интеграл есть :

                  Если сейчас заменить ещё в:

                Таким образом, результат будет:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. пусть .

                  Тогда пусть и подставим :

                  1. Интеграл есть :

                  Если сейчас заменить ещё в:

                Таким образом, результат будет:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. пусть .

                  Тогда пусть и подставим :

                  1. Интеграл есть :

                  Если сейчас заменить ещё в:

                Таким образом, результат будет:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. пусть .

                  Тогда пусть и подставим :

                  1. Интеграл есть :

                  Если сейчас заменить ещё в:

                Таким образом, результат будет:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. Интеграл от косинуса есть синус:

                Таким образом, результат будет:

              Результат есть:

            Если сейчас заменить ещё в:

          Метод #2

          1. Перепишите подынтегральное выражение:

          2. Интегрируем почленно:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. Интеграл есть :

                  Таким образом, результат будет:

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. Интеграл есть :

                  Таким образом, результат будет:

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. Интеграл есть :

                  Таким образом, результат будет:

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. Интеграл есть :

                  Таким образом, результат будет:

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. Интеграл есть :

                  Таким образом, результат будет:

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. пусть .

              Тогда пусть и подставим :

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. Интеграл от косинуса есть синус:

                Таким образом, результат будет:

              Если сейчас заменить ещё в:

            Результат есть:

        Таким образом, результат будет:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Перепишите подынтегральное выражение:

        2. Перепишите подынтегральное выражение:

        3. Интегрируем почленно:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. пусть .

              Тогда пусть и подставим :

              1. Интегрируем почленно:

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. пусть .

                    Тогда пусть и подставим :

                    1. Интеграл есть :

                    Если сейчас заменить ещё в:

                  Таким образом, результат будет:

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. пусть .

                    Тогда пусть и подставим :

                    1. Интеграл есть :

                    Если сейчас заменить ещё в:

                  Таким образом, результат будет:

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. Интеграл от косинуса есть синус:

                  Таким образом, результат будет:

                Результат есть:

              Если сейчас заменить ещё в:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. Перепишите подынтегральное выражение:

            3. Интегрируем почленно:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. Перепишите подынтегральное выражение:

                2. Интегрируем почленно:

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. пусть .

                      Тогда пусть и подставим :

                      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                        1. Интеграл от косинуса есть синус:

                        Таким образом, результат будет:

                      Если сейчас заменить ещё в:

                    Таким образом, результат будет:

                  1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

                  Результат есть:

                Таким образом, результат будет:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. пусть .

                  Тогда пусть и подставим :

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. Интеграл от косинуса есть синус:

                    Таким образом, результат будет:

                  Если сейчас заменить ещё в:

                Таким образом, результат будет:

              1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

              Результат есть:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. пусть .

              Тогда пусть и подставим :

              1. Интегрируем почленно:

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. Интеграл есть :

                  Таким образом, результат будет:

                1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

                Результат есть:

              Если сейчас заменить ещё в:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. Интегрируем почленно:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. пусть .

                  Тогда пусть и подставим :

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. Интеграл от косинуса есть синус:

                    Таким образом, результат будет:

                  Если сейчас заменить ещё в:

                Таким образом, результат будет:

              1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

              Результат есть:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. пусть .

              Тогда пусть и подставим :

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. Интеграл от косинуса есть синус:

                Таким образом, результат будет:

              Если сейчас заменить ещё в:

            Таким образом, результат будет:

          1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

          Результат есть:

        Таким образом, результат будет:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Перепишите подынтегральное выражение:

        2. пусть .

          Тогда пусть и подставим :

          1. Интегрируем почленно:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл есть :

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл есть :

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл есть :

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл есть :

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. Интеграл от косинуса есть синус:

              Таким образом, результат будет:

            Результат есть:

          Если сейчас заменить ещё в:

        Таким образом, результат будет:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Перепишите подынтегральное выражение:

        2. Перепишите подынтегральное выражение:

        3. Интегрируем почленно:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. Перепишите подынтегральное выражение:

            3. Интегрируем почленно:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. Перепишите подынтегральное выражение:

                2. Интегрируем почленно:

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. пусть .

                      Тогда пусть и подставим :

                      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                        1. Интеграл от косинуса есть синус:

                        Таким образом, результат будет:

                      Если сейчас заменить ещё в:

                    Таким образом, результат будет:

                  1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

                  Результат есть:

                Таким образом, результат будет:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. пусть .

                  Тогда пусть и подставим :

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. Интеграл от косинуса есть синус:

                    Таким образом, результат будет:

                  Если сейчас заменить ещё в:

                Таким образом, результат будет:

              1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

              Результат есть:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. пусть .

              Тогда пусть и подставим :

              1. Интегрируем почленно:

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. Интеграл есть :

                  Таким образом, результат будет:

                1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

                Результат есть:

              Если сейчас заменить ещё в:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. Интегрируем почленно:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. пусть .

                  Тогда пусть и подставим :

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. Интеграл от косинуса есть синус:

                    Таким образом, результат будет:

                  Если сейчас заменить ещё в:

                Таким образом, результат будет:

              1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

              Результат есть:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. пусть .

              Тогда пусть и подставим :

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. Интеграл от косинуса есть синус:

                Таким образом, результат будет:

              Если сейчас заменить ещё в:

            Таким образом, результат будет:

          1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

          Результат есть:

        Таким образом, результат будет:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Перепишите подынтегральное выражение:

        2. пусть .

          Тогда пусть и подставим :

          1. Интегрируем почленно:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл есть :

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл есть :

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл есть :

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. Интеграл от косинуса есть синус:

              Таким образом, результат будет:

            Результат есть:

          Если сейчас заменить ещё в:

        Таким образом, результат будет:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Перепишите подынтегральное выражение:

        2. Перепишите подынтегральное выражение:

        3. Интегрируем почленно:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. пусть .

              Тогда пусть и подставим :

              1. Интегрируем почленно:

                1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                  1. Интеграл есть :

                  Таким образом, результат будет:

                1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

                Результат есть:

              Если сейчас заменить ещё в:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. Интегрируем почленно:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. пусть .

                  Тогда пусть и подставим :

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. Интеграл от косинуса есть синус:

                    Таким образом, результат будет:

                  Если сейчас заменить ещё в:

                Таким образом, результат будет:

              1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

              Результат есть:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. пусть .

              Тогда пусть и подставим :

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. Интеграл от косинуса есть синус:

                Таким образом, результат будет:

              Если сейчас заменить ещё в:

            Таким образом, результат будет:

          1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

          Результат есть:

        Таким образом, результат будет:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Перепишите подынтегральное выражение:

        2. пусть .

          Тогда пусть и подставим :

          1. Интегрируем почленно:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл есть :

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. пусть .

                Тогда пусть и подставим :

                1. Интеграл есть :

                Если сейчас заменить ещё в:

              Таким образом, результат будет:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. Интеграл от косинуса есть синус:

              Таким образом, результат будет:

            Результат есть:

          Если сейчас заменить ещё в:

        Таким образом, результат будет:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Перепишите подынтегральное выражение:

        2. Перепишите подынтегральное выражение:

        3. Интегрируем почленно:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Перепишите подынтегральное выражение:

            2. Интегрируем почленно:

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. пусть .

                  Тогда пусть и подставим :

                  1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                    1. Интеграл от косинуса есть синус:

                    Таким образом, результат будет:

                  Если сейчас заменить ещё в:

                Таким образом, результат будет:

              1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

              Результат есть:

            Таким образом, результат будет:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. пусть .

              Тогда пусть и подставим :

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. Интеграл от косинуса есть синус:

                Таким образом, результат будет:

              Если сейчас заменить ещё в:

            Таким образом, результат будет:

          1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

          Результат есть:

        Таким образом, результат будет:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Перепишите подынтегральное выражение:

        2. пусть .

          Тогда пусть и подставим :

          1. Интегрируем почленно:

            1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

              1. Интеграл есть :

              Таким образом, результат будет:

            1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

            Результат есть:

          Если сейчас заменить ещё в:

        Таким образом, результат будет:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Перепишите подынтегральное выражение:

        2. Интегрируем почленно:

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. пусть .

              Тогда пусть и подставим :

              1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

                1. Интеграл от косинуса есть синус:

                Таким образом, результат будет:

              Если сейчас заменить ещё в:

            Таким образом, результат будет:

          1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

          Результат есть:

        Таким образом, результат будет:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. пусть .

          Тогда пусть и подставим :

          1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

            1. Интеграл от косинуса есть синус:

            Таким образом, результат будет:

          Если сейчас заменить ещё в:

        Таким образом, результат будет:

      1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

      Результат есть:

    4. Добавляем постоянную интегрирования:


    Ответ:

    График
    Ответ [src]
      1                                                                                                                                                                                                                                                                       
      /                                                                                                                                                                                                                                                                       
     |                                                        3                      5                      7                     9                     11                     15                    13                    17                   19                21          
     |     22         88179    88179*cos(1)*sin(1)   29393*sin (1)*cos(1)   29393*sin (1)*cos(1)   12597*sin (1)*cos(1)   4199*sin (1)*cos(1)   4199*sin  (1)*cos(1)   2261*sin  (1)*cos(1)   323*sin  (1)*cos(1)   133*sin  (1)*cos(1)   21*sin  (1)*cos(1)   sin  (1)*cos(1)
     |  sin  (x) dx = ------ - ------------------- - -------------------- - -------------------- - -------------------- - ------------------- - -------------------- - -------------------- - ------------------- - ------------------- - ------------------ - ---------------
     |                524288          524288                262144                 327680                 163840                 61440                 67584                  42240                   5632                  2640                 440                  22      
    /                                                                                                                                                                                                                                                                         
    0                                                                                                                                                                                                                                                                         
    $${{63525\,\sin 16+14069880\,\sin 8+11616\,\sin ^54-5808000\,\sin ^34 +86423040\,\sin 4+30720\,\sin ^{11}2-2252800\,\sin ^92+27033600\, \sin ^72-121110528\,\sin ^52+259522560\,\sin ^32-346030080\,\sin 2+ 232792560}\over{1384120320}}$$
    Численный ответ [src]
    0.00140026882208537
    Ответ (Неопределённый) [src]
      /                                                                                                                                                                                         
     |                          3             5             9                      11             3             7              5                                                                
     |    22             275*sin (4*x)   7*sin (2*x)   5*sin (2*x)   sin(2*x)   sin  (2*x)   3*sin (2*x)   5*sin (2*x)   11*sin (4*x)   385*sin(16*x)   1023*sin(4*x)   10659*sin(8*x)   88179*x
     | sin  (x) dx = C - ------------- - ----------- - ----------- - -------- + ---------- + ----------- + ----------- + ------------ + ------------- + ------------- + -------------- + -------
     |                       65536            80           3072         4         45056           16           256         1310720         8388608          16384          1048576        524288
    /                                                                                                                                                                                           
    $${{{{11\,\left({{5\,\left({{{{\sin \left(16\,x\right)}\over{2}}+8\,x }\over{8}}+{{\sin \left(8\,x\right)}\over{2}}+2\,x\right)}\over{64}} +{{5\,\left({{\sin \left(8\,x\right)}\over{2}}+4\,x\right)}\over{32 }}+{{{{\sin ^5\left(4\,x\right)}\over{5}}-{{2\,\sin ^3\left(4\,x \right)}\over{3}}+\sin \left(4\,x\right)}\over{32}}+{{5\,\left(\sin \left(4\,x\right)-{{\sin ^3\left(4\,x\right)}\over{3}}\right)}\over{ 16}}+{{5\,\sin \left(4\,x\right)}\over{32}}+{{x}\over{8}}\right) }\over{4096}}+{{165\,\left({{{{{{\sin \left(16\,x\right)}\over{2}}+8 \,x}\over{8}}+{{\sin \left(8\,x\right)}\over{2}}+2\,x}\over{32}}+{{3 \,\left({{\sin \left(8\,x\right)}\over{2}}+4\,x\right)}\over{16}}+{{ \sin \left(4\,x\right)-{{\sin ^3\left(4\,x\right)}\over{3}}}\over{4 }}+{{\sin \left(4\,x\right)}\over{4}}+{{x}\over{4}}\right)}\over{ 4096}}+{{231\,\left({{3\,\left({{\sin \left(8\,x\right)}\over{2}}+4 \,x\right)}\over{16}}+{{\sin \left(4\,x\right)-{{\sin ^3\left(4\,x \right)}\over{3}}}\over{8}}+{{3\,\sin \left(4\,x\right)}\over{8}}+{{ x}\over{2}}\right)}\over{2048}}+{{165\,\left({{{{\sin \left(8\,x \right)}\over{2}}+4\,x}\over{8}}+{{\sin \left(4\,x\right)}\over{2}}+ x\right)}\over{2048}}+{{55\,\left({{\sin \left(4\,x\right)}\over{2}} +2\,x\right)}\over{4096}}-{{-{{\sin ^{11}\left(2\,x\right)}\over{11 }}+{{5\,\sin ^9\left(2\,x\right)}\over{9}}-{{10\,\sin ^7\left(2\,x \right)}\over{7}}+2\,\sin ^5\left(2\,x\right)-{{5\,\sin ^3\left(2\,x \right)}\over{3}}+\sin \left(2\,x\right)}\over{2048}}-{{55\,\left({{ \sin ^9\left(2\,x\right)}\over{9}}-{{4\,\sin ^7\left(2\,x\right) }\over{7}}+{{6\,\sin ^5\left(2\,x\right)}\over{5}}-{{4\,\sin ^3 \left(2\,x\right)}\over{3}}+\sin \left(2\,x\right)\right)}\over{2048 }}-{{165\,\left(-{{\sin ^7\left(2\,x\right)}\over{7}}+{{3\,\sin ^5 \left(2\,x\right)}\over{5}}-\sin ^3\left(2\,x\right)+\sin \left(2\,x \right)\right)}\over{1024}}-{{231\,\left({{\sin ^5\left(2\,x\right) }\over{5}}-{{2\,\sin ^3\left(2\,x\right)}\over{3}}+\sin \left(2\,x \right)\right)}\over{1024}}-{{165\,\left(\sin \left(2\,x\right)-{{ \sin ^3\left(2\,x\right)}\over{3}}\right)}\over{2048}}-{{11\,\sin \left(2\,x\right)}\over{2048}}+{{x}\over{1024}}}\over{2}}$$