1 1
/ /
| |
| ________ | ________
| \/ tan(x) dx = | \/ tan(x) dx
| |
/ /
0 0
$$\int_{0}^{1} \sqrt{\tan{\left (x \right )}}\, dx = \int_{0}^{1} \sqrt{\tan{\left (x \right )}}\, dx$$
Ответ (Неопределённый)
[src]$$2\,\left(-{{\log \left(\tan x+\sqrt{2}\,\sqrt{\tan x}+1\right)
}\over{2^{{{5}\over{2}}}}}+{{\log \left(\tan x-\sqrt{2}\,\sqrt{\tan
x}+1\right)}\over{2^{{{5}\over{2}}}}}+{{\arctan \left({{2\,\sqrt{
\tan x}+\sqrt{2}}\over{\sqrt{2}}}\right)}\over{2^{{{3}\over{2}}}}}+
{{\arctan \left({{2\,\sqrt{\tan x}-\sqrt{2}}\over{\sqrt{2}}}\right)
}\over{2^{{{3}\over{2}}}}}\right)$$