∫ Найти интеграл от y = f(x) = 3*x^3 dx (3 умножить на х в кубе) - с подробным решением онлайн [Есть ответ!]

Интеграл 3*x^3 (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1        
      /        
     |         
     |     3   
     |  3*x  dx
     |         
    /          
    0          
    $$\int\limits_{0}^{1} 3 x^{3}\, dx$$
    Подробное решение
    1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

      1. Интеграл есть когда :

      Таким образом, результат будет:

    2. Добавляем постоянную интегрирования:


    Ответ:

    График
    Ответ [src]
    3/4
    $$\frac{3}{4}$$
    =
    =
    3/4
    $$\frac{3}{4}$$
    Численный ответ [src]
    0.75
    Ответ (Неопределённый) [src]
      /                  
     |                  4
     |    3          3*x 
     | 3*x  dx = C + ----
     |                4  
    /                    
    $$\int 3 x^{3}\, dx = C + \frac{3 x^{4}}{4}$$
    График
    Интеграл 3*x^3 (dx) /media/krcore-image-pods/hash/indefinite/f/57/e33880969e2dfc6df4e16a3505998.png