1
/
| / 2 \ / 2 \
| x 1 log\1 + tan (1/2)/ tan(1/2) 2*(pi*I + log(1 - tan(1/2))) log\1 + tan (1/2)/*tan(1/2) 2*(pi*I + log(1 - tan(1/2)))*tan(1/2)
| ---------- dx = - ------------- + ------------------ - ------------- - 2*pi*I - ---------------------------- - --------------------------- + -------------------------------------
| 1 - sin(x) -1 + tan(1/2) -1 + tan(1/2) -1 + tan(1/2) -1 + tan(1/2) -1 + tan(1/2) -1 + tan(1/2)
|
/
0
$${{\left(\sin ^21-2\,\sin 1+\cos ^21+1\right)\,\log \left(\sin ^21-2
\,\sin 1+\cos ^21+1\right)+2\,\cos 1}\over{\sin ^21-2\,\sin 1+\cos ^
21+1}}-\log 2$$
Ответ (Неопределённый)
[src] / / 2/x\\ / /x\\ /x\ / 2/x\\ /x\ / /x\\ /x\
| log|1 + tan |-|| 2*log|-1 + tan|-|| x*tan|-| log|1 + tan |-||*tan|-| 2*log|-1 + tan|-||*tan|-|
| x \ \2// x \ \2// \2/ \ \2// \2/ \ \2// \2/
| ---------- dx = C + ---------------- - ----------- - ------------------ - ----------- - ----------------------- + -------------------------
| 1 - sin(x) /x\ /x\ /x\ /x\ /x\ /x\
| -1 + tan|-| -1 + tan|-| -1 + tan|-| -1 + tan|-| -1 + tan|-| -1 + tan|-|
/ \2/ \2/ \2/ \2/ \2/ \2/
$${{\left(\sin ^2x-2\,\sin x+\cos ^2x+1\right)\,\log \left(\sin ^2x-2
\,\sin x+\cos ^2x+1\right)+2\,x\,\cos x}\over{\sin ^2x-2\,\sin x+
\cos ^2x+1}}$$