1
/
|
| x / 2 \ 1
| ------- dx = oo - log\1 + tan (1/2)/ - ---------- + log(tan(1/2))
| 2 2*tan(1/2)
| sin (x)
|
/
0
$$\int_{0}^{1} \frac{x}{\sin^{2}{\left (x \right )}}\, dx = - \frac{1}{2 \tan{\left (\frac{1}{2} \right )}} + \log{\left (\tan{\left (\frac{1}{2} \right )} \right )} - \log{\left (\tan^{2}{\left (\frac{1}{2} \right )} + 1 \right )} + \infty$$
Ответ (Неопределённый)
[src] / /x\
| x*tan|-|
| x / 2/x\\ \2/ x / /x\\
| ------- dx = C - log|1 + tan |-|| + -------- - -------- + log|tan|-||
| 2 \ \2// 2 /x\ \ \2//
| sin (x) 2*tan|-|
| \2/
/
$${{\left(\sin ^2\left(2\,x\right)+\cos ^2\left(2\,x\right)-2\,\cos
\left(2\,x\right)+1\right)\,\log \left(\sin ^2x+\cos ^2x+2\,\cos x+1
\right)+\left(\sin ^2\left(2\,x\right)+\cos ^2\left(2\,x\right)-2\,
\cos \left(2\,x\right)+1\right)\,\log \left(\sin ^2x+\cos ^2x-2\,
\cos x+1\right)-4\,x\,\sin \left(2\,x\right)}\over{2\,\sin ^2\left(2
\,x\right)+2\,\cos ^2\left(2\,x\right)-4\,\cos \left(2\,x\right)+2}}$$