Интеграл x-2*x^2 (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1              
      /              
     |               
     |  /       2\   
     |  \x - 2*x / dx
     |               
    /                
    0                
    012x2+xdx\int_{0}^{1} - 2 x^{2} + x\, dx
    Подробное решение
    1. Интегрируем почленно:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        2x2dx=2x2dx\int - 2 x^{2}\, dx = - \int 2 x^{2}\, dx

        1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

          2x2dx=2x2dx\int 2 x^{2}\, dx = 2 \int x^{2}\, dx

          1. Интеграл xnx^{n} есть xn+1n+1\frac{x^{n + 1}}{n + 1}:

            x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

          Таким образом, результат будет: 2x33\frac{2 x^{3}}{3}

        Таким образом, результат будет: 2x33- \frac{2 x^{3}}{3}

      1. Интеграл xnx^{n} есть xn+1n+1\frac{x^{n + 1}}{n + 1}:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      Результат есть: 2x33+x22- \frac{2 x^{3}}{3} + \frac{x^{2}}{2}

    2. Теперь упростить:

      x26(4x+3)\frac{x^{2}}{6} \left(- 4 x + 3\right)

    3. Добавляем постоянную интегрирования:

      x26(4x+3)+constant\frac{x^{2}}{6} \left(- 4 x + 3\right)+ \mathrm{constant}


    Ответ:

    x26(4x+3)+constant\frac{x^{2}}{6} \left(- 4 x + 3\right)+ \mathrm{constant}

    График
    02468-8-6-4-2-1010-10001000
    Ответ [src]
      1                     
      /                     
     |                      
     |  /       2\          
     |  \x - 2*x / dx = -1/6
     |                      
    /                       
    0                       
    16-{{1}\over{6}}
    Численный ответ [src]
    -0.166666666666667
    Ответ (Неопределённый) [src]
      /                             
     |                      2      3
     | /       2\          x    2*x 
     | \x - 2*x / dx = C + -- - ----
     |                     2     3  
    /                               
    x222x33{{x^2}\over{2}}-{{2\,x^3}\over{3}}