Используем интегрирование по частям:
∫udv=uv−∫vdu
пусть u(x)=atan(x) и пусть dv(x)=x.
Затем du(x)=x2+11.
Чтобы найти v(x):
Интеграл xn есть n+1xn+1 когда n=−1:
∫xdx=2x2
Теперь решаем под-интеграл.
Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:
∫2(x2+1)x2dx=2∫x2+1x2dx
Перепишите подынтегральное выражение:
x2+1x2=1−x2+11
Интегрируем почленно:
Интеграл от константы есть эта константа, умноженная на переменную интегрирования:
∫1dx=x
Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:
∫(−x2+11)dx=−∫x2+11dx
Интеграл x2+11 есть atan(x).
Таким образом, результат будет: −atan(x)
Результат есть: x−atan(x)
Таким образом, результат будет: 2x−2atan(x)
Добавляем постоянную интегрирования:
2x2atan(x)−2x+2atan(x)+constant