∫ Найти интеграл от y = f(x) = x*12^x dx (х умножить на 12 в степени х) - с подробным решением онлайн [Есть ответ!]

Интеграл x*12^x (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1         
      /         
     |          
     |      x   
     |  x*12  dx
     |          
    /           
    0           
    $$\int_{0}^{1} 12^{x} x\, dx$$
    График
    Ответ [src]
      1                                              
      /                                              
     |                           /   2              \
     |      x         1       12*\log (12) - log(12)/
     |  x*12  dx = -------- + -----------------------
     |                2                  3           
    /              log (12)           log (12)       
    0                                                
    $${{12\,\log 3+24\,\log 2-12}\over{\left(\log 3\right)^2+4\,\log 2\, \log 3+4\,\left(\log 2\right)^2}}+{{1}\over{\left(\log 3\right)^2+4 \,\log 2\,\log 3+4\,\left(\log 2\right)^2}}$$
    Численный ответ [src]
    3.04770980126993
    Ответ (Неопределённый) [src]
      /                                          
     |                  x /                2    \
     |     x          12 *\-log(12) + x*log (12)/
     | x*12  dx = C + ---------------------------
     |                             3             
    /                           log (12)         
    $${{\left(\left(\log 3+2\,\log 2\right)\,x-1\right)\,e^{\log 3\,x+2\, \log 2\,x}}\over{\left(\log 3\right)^2+4\,\log 2\,\log 3+4\,\left( \log 2\right)^2}}$$