1 1
/ /
| |
| x*log(sin(x)) dx = | x*log(sin(x)) dx
| |
/ /
0 0
$$-{{i\,\arctan \left({{\sin 1}\over{\cos 1+1}}\right)}\over{2}}-{{i
\,\arctan \left({{\sin 1}\over{\cos 1-1}}\right)}\over{2}}+{{\log
\sin 1}\over{2}}-{{\log \left(2\,\cos 1+2\right)}\over{4}}-{{\log
\left(2-2\,\cos 1\right)}\over{4}}-{\it li}_{3}(e^{i})+i\,{\it li}_{
2}(e^{i})-{\it li}_{3}(-e^{i})+i\,{\it li}_{2}(-e^{i})+{{\zeta\left(
3\right)}\over{4}}+{{i}\over{6}}$$
Ответ (Неопределённый)
[src] /
|
| 2
| x *cos(x)
| --------- dx
| sin(x)
/ | 2
| / x *log(sin(x))
| x*log(sin(x)) dx = C - --------------- + --------------
| 2 2
/
$${{x^2\,\log \sin x}\over{2}}-{{3\,x^2\,\log \left(\sin ^2x+\cos ^2x
+2\,\cos x+1\right)+3\,x^2\,\log \left(\sin ^2x+\cos ^2x-2\,\cos x+1
\right)+6\,i\,x^2\,{\rm atan2}\left(\sin x , \cos x+1\right)-6\,i\,x
^2\,{\rm atan2}\left(\sin x , 1-\cos x\right)+12\,{\it li}_{3}(e^{i
\,x})-12\,i\,x\,{\it li}_{2}(e^{i\,x})+12\,{\it li}_{3}(-e^{i\,x})-
12\,i\,x\,{\it li}_{2}(-e^{i\,x})-2\,i\,x^3}\over{12}}$$