1 1
/ /
| |
| 2 | 2
| x | x
| ------ dx = | ------ dx
| sin(x) | sin(x)
| |
/ /
0 0
$$-i\,\arctan \left({{\sin 1}\over{\cos 1+1}}\right)+i\,\arctan
\left({{\sin 1}\over{\cos 1-1}}\right)-{{\log \left(2\,\cos 1+2
\right)}\over{2}}+{{\log \left(2-2\,\cos 1\right)}\over{2}}+2\,
{\it li}_{3}(e^{i})-2\,i\,{\it li}_{2}(e^{i})-2\,{\it li}_{3}(-e^{i}
)+2\,i\,{\it li}_{2}(-e^{i})-{{7\,\zeta\left(3\right)}\over{2}}$$
Ответ (Неопределённый)
[src]$$-{{x^2\,\log \left(\sin ^2x+\cos ^2x+2\,\cos x+1\right)-x^2\,\log
\left(\sin ^2x+\cos ^2x-2\,\cos x+1\right)+2\,i\,x^2\,{\rm atan2}
\left(\sin x , \cos x+1\right)+2\,i\,x^2\,{\rm atan2}\left(\sin x ,
1-\cos x\right)-4\,{\it li}_{3}(e^{i\,x})+4\,i\,x\,{\it li}_{2}(e^{i
\,x})+4\,{\it li}_{3}(-e^{i\,x})-4\,i\,x\,{\it li}_{2}(-e^{i\,x})
}\over{2}}$$