Интеграл x^2-x (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1            
      /            
     |             
     |  / 2    \   
     |  \x  - x/ dx
     |             
    /              
    0              
    01x2xdx\int_{0}^{1} x^{2} - x\, dx
    Подробное решение
    1. Интегрируем почленно:

      1. Интеграл xnx^{n} есть xn+1n+1\frac{x^{n + 1}}{n + 1}:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        xdx=xdx\int - x\, dx = - \int x\, dx

        1. Интеграл xnx^{n} есть xn+1n+1\frac{x^{n + 1}}{n + 1}:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        Таким образом, результат будет: x22- \frac{x^{2}}{2}

      Результат есть: x33x22\frac{x^{3}}{3} - \frac{x^{2}}{2}

    2. Теперь упростить:

      x26(2x3)\frac{x^{2}}{6} \left(2 x - 3\right)

    3. Добавляем постоянную интегрирования:

      x26(2x3)+constant\frac{x^{2}}{6} \left(2 x - 3\right)+ \mathrm{constant}


    Ответ:

    x26(2x3)+constant\frac{x^{2}}{6} \left(2 x - 3\right)+ \mathrm{constant}

    График
    02468-8-6-4-2-1010-500500
    Ответ [src]
      1                   
      /                   
     |                    
     |  / 2    \          
     |  \x  - x/ dx = -1/6
     |                    
    /                     
    0                     
    16-{{1}\over{6}}
    Численный ответ [src]
    -0.166666666666667
    Ответ (Неопределённый) [src]
      /                         
     |                    2    3
     | / 2    \          x    x 
     | \x  - x/ dx = C - -- + --
     |                   2    3 
    /                           
    x33x22{{x^3}\over{3}}-{{x^2}\over{2}}